Construction of equations for classical equilibrium correlation Green's functions on the basis of kinetic equations. II
Teoretičeskaâ i matematičeskaâ fizika, Tome 89 (1991) no. 1, pp. 132-150 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Equations for classical equilibrium correlation Green's functions are constructed in the framework of the general theory developed earlier [1] on the basis of different kinetic equations for multicomponent systems. The following systems of kinetic equations are used: Vlasov, Vlasov–Landau, Boltzmann, Boltzmann–Enskog, and a modified system of Enskog equations (Markov), and the Vlasov–Landau equations and their combinations (non-Markov). In the framework of the microscopic approach. Of [1] equations are obtained for the equilibrium correlation Green's functions in the mean-field approximation. For a two-component system, the equilibrium correlation Green's functions are found explicitly in the mean-field approximation. A mixture of charged particles and a mixture of hard spheres are considered as illustrations.
@article{TMF_1991_89_1_a11,
     author = {G. O. Balabanyan},
     title = {Construction of equations for classical equilibrium correlation {Green's} functions on the basis of kinetic {equations.~II}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {132--150},
     year = {1991},
     volume = {89},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1991_89_1_a11/}
}
TY  - JOUR
AU  - G. O. Balabanyan
TI  - Construction of equations for classical equilibrium correlation Green's functions on the basis of kinetic equations. II
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1991
SP  - 132
EP  - 150
VL  - 89
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1991_89_1_a11/
LA  - ru
ID  - TMF_1991_89_1_a11
ER  - 
%0 Journal Article
%A G. O. Balabanyan
%T Construction of equations for classical equilibrium correlation Green's functions on the basis of kinetic equations. II
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1991
%P 132-150
%V 89
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1991_89_1_a11/
%G ru
%F TMF_1991_89_1_a11
G. O. Balabanyan. Construction of equations for classical equilibrium correlation Green's functions on the basis of kinetic equations. II. Teoretičeskaâ i matematičeskaâ fizika, Tome 89 (1991) no. 1, pp. 132-150. http://geodesic.mathdoc.fr/item/TMF_1991_89_1_a11/

[1] Balabanyan G. O., TMF, 80:1 (1989), 118–137 ; 3, 452–460 | MR | MR

[2] Balabanyan G. O., TMF, 88:2 (1991), 225–246 | MR

[3] Zubarev D. N., Neravnovesnaya statisticheskaya termodinamika, Nauka, M., 1971

[4] Vladimirov V. S., Obobschennye funktsii v matematicheskoi fizike, Nauka, M., 1979 | MR

[5] Rezibua P., De Lener M., Klassicheskaya kineticheskaya teoriya gazov, Mir, M., 1980

[6] Balesku R., Ravnovesnaya i neravnovesnaya statisticheskaya mekhanika, T. 1, 2, Mir, M., 1978 | MR

[7] Zubarev D. N., “Sovremennye metody statisticheskoi teorii neravnovesnykh protsessov”, Itogi nauki i tekhniki. Sovremennye problemy matematiki, 15, VINITI, M., 1980, 131–226 | MR

[8] G. Temperli, Dzh. Roulinson, Dzh. Rashbruk (red.), Fizika prostykh zhidkostei. Statisticheskaya teoriya, Mir, M., 1971

[9] Zaiman Dzh., Modeli besporyadka, Mir, M., 1982

[10] Balabanyan G. O., TMF, 84:3 (1990), 459–473 | MR

[11] Zubarev D. N., Novikov M. Yu., TMF, 18:1 (1974), 78–89 | MR | Zbl

[12] Fertsiger Dzh., Kaper G., Matematicheskaya teoriya protsessov perenosa v gazakh, Mir, M., 1976

[13] Rudyak V. Ya., Statisticheskaya teoriya dissipativnykh protsessov v gazakh i zhidkostyakh, Nauka, Novosibirsk, 1987

[14] Van Beijeren H., Ernst M. H., Physica, 68:3 (1973), 437–456 | DOI | MR

[15] Van Beijeren H., Ernst M. H., Physica, 70:2 (1973), 225–242 | DOI

[16] Tham M. K., Gubbins K. E., J. Chem. Phys., 55:1 (1971), 268–279 | DOI

[17] De Haro M. L., Cohen E. G. D., Kincaid J. M., J. Chem. Phys., 78:5 (1983), 2746–2759 | DOI | MR

[18] Ernst M. H., Dorfman J. R., Hoegy W. R., Van Leeuwen J. M. J., Physica, 45:1 (1969), 127–146 | DOI | MR

[19] Boon J. P., Yip S., Molecular hydrodynamics, Mc. Grow-Hill Inc., N.-Y., 1980

[20] Kheerman D. V., Metody kompyuternogo eksperimenta v teoreticheskoi fizike, Nauka, M., 1990

[21] Zubarev D. N., Morozov V. G., TMF, 60:2 (1984), 270–279 | MR

[22] Bogolyubov N. N., Bogolyubov N. N. (ml.), Vvedenie v kvantovuyu statisticheskuyu mekhaniku, Nauka, M., 1984 | MR

[23] Resibois P., Physica, 94A:1 (1978), 1–19 | DOI | MR

[24] Konijnendijk H. H. U., Van Leeuwen J. M. J., Physica, 64:2 (1973), 342–362 | DOI | MR

[25] Sykes J., J. Stat. Phys., 8:3 (1973), 279–292 | DOI

[26] Yukhnovskii I. R., Golovko M. F., Statisticheskaya teoriya klassicheskikh ravnovesnykh sistem, Naukova dumka, Kiev, 1980 | MR

[27] Bogolyubov N. N., EChAYa, 9:4 (1978), 501–579 | MR

[28] Rice S. A., Allnatt A., J. Chem. Phys., 34:6 (1961), 2144–2155 | DOI

[29] Rice S. A., Grey P., The statistical mechanics of simple liquids, Interscience, N.-Y., 1965 | MR

[30] Prigogine I., Nicolis G., Misguich J., J. Chem. Phys., 43:12 (1965), 4516–4621 | DOI

[31] Misguich J. H., Nicolis G., Mol. Phys., 24:2 (1972), 309–339 | DOI

[32] Zubarev D. N., Tserkovnikov Yu. A., Tr. MIAN, 175, No 3, 1986, 134–177 | MR

[33] Bogolyubov N. N. (ml.), Sadovnikov B. I., Nekotorye voprosy statisticheskoi mekhaniki, Vysshaya shkola, M., 1975 | MR

[34] Bonch-Bruevich V. L., Tyablikov S. V., Metod funktsii Grina v statisticheskoi mekhanike, Fizmatgiz, M., 1961 | MR

[35] Kroll N., Traivelpis A., Osnovy fiziki plazmy, Mir, M., 1975 | MR

[36] Lifshits E. M., Pitaevskii L. P., Fizicheskaya kinetika, Nauka, M., 1979 | MR | Zbl

[37] Balabanyan G. O., TMF, 82:1 (1990), 117–132 | MR

[38] Balabanyan G. O., TMF, 82:2 (1990), 287–303 | MR

[39] Balabanyan G. O., TMF, 82:3 (1990), 450–465 | MR

[40] Balabanyan G. O., TMF, 83:2 (1990), 311–319 | MR | Zbl

[41] Balabanyan G. O., TMF, 85:1 (1990), 102–114 | MR | Zbl

[42] Balabanyan G. O., TMF, 86:3 (1991), 460–473 | MR | Zbl