Field-theory models that admit alternative Lagrangian formulations. I
Teoretičeskaâ i matematičeskaâ fizika, Tome 89 (1991) no. 1, pp. 121-131 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Some theorems are proved concerning the structure of Lagrangian systems of differential equations for which the Lagrangian is not uniquely determined. In particular, a complete description is obtained for bi-Lagrangian systems of second order with hyperregular Lagrangians quadratic in the derivatives.
@article{TMF_1991_89_1_a10,
     author = {F. A. Lunev},
     title = {Field-theory models that admit alternative {Lagrangian} {formulations.~I}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {121--131},
     year = {1991},
     volume = {89},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1991_89_1_a10/}
}
TY  - JOUR
AU  - F. A. Lunev
TI  - Field-theory models that admit alternative Lagrangian formulations. I
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1991
SP  - 121
EP  - 131
VL  - 89
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1991_89_1_a10/
LA  - ru
ID  - TMF_1991_89_1_a10
ER  - 
%0 Journal Article
%A F. A. Lunev
%T Field-theory models that admit alternative Lagrangian formulations. I
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1991
%P 121-131
%V 89
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1991_89_1_a10/
%G ru
%F TMF_1991_89_1_a10
F. A. Lunev. Field-theory models that admit alternative Lagrangian formulations. I. Teoretičeskaâ i matematičeskaâ fizika, Tome 89 (1991) no. 1, pp. 121-131. http://geodesic.mathdoc.fr/item/TMF_1991_89_1_a10/

[1] Olver P., Primenenie grupp Li k differentsialnym uravneniyam, Mir, M., 1989 | MR | Zbl

[2] Antonioni P., Marmo J., Rubano C., Nuovo Cim., B86:1 (1985), 17–30 | DOI

[3] Cordero P., Nuovo Cim., B100:1 (1987), 1–15 | DOI | MR

[4] Ocubo S., Phys. Rev., D22:4 (1981), 919–923 | MR

[5] Kaup D. J., Olver P. J., J. Math. Phys., 31:1 (1990), 113–117 | DOI | MR | Zbl

[6] Lunev F. A., Simmetriino-rekursivnyi operator v bilagranzhevykh teoriyakh, Preprint 89-32/109, NIIYaF MGU, M., 1989

[7] Henneaux M., Ann. Phys., 140:1 (1982), 45–64 | DOI | MR | Zbl

[8] Sarlet W., J. Phys., A15:5 (1982), 1503–1517 | MR | Zbl

[9] Anderson I. M., Duchamp T. E., J. Diff. Eq., 51:1, 1–47 | DOI | MR | Zbl

[10] Hojman S., Harrieston H., J. Math. Phys., 22:7 (1981), 1414–1419 | DOI | MR | Zbl

[11] Magnano J., Ferraris M., Francaviglia M., J. Math. Phys., 31:2, 378–387 | DOI | MR | Zbl

[12] Khorn R., Dzhonson Ch., Matrichnyi analiz, Mir, M., 1989 | MR

[13] Gantmakher F. R., Teoriya matrits, Nauka, M., 1988 | MR | Zbl

[14] Shirokov A. P., DAN SSSR, 102:3 (1955), 461–464 | MR | Zbl