Higher moments in a model of zero-width slits
Teoretičeskaâ i matematičeskaâ fizika, Tome 89 (1991) no. 1, pp. 11-17 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A model of zero-width slits with higher moments is described. It is based on the theory of extensions of operators in a space with indefinite metric. The way of choosing the parameters of the extensions that ensures the necessary correspondence between the model and real solutions is indicated. An approximation for the resonances of a Helmholtz resonator is obtained.
@article{TMF_1991_89_1_a1,
     author = {A. A. Kiselev and I. Yu. Popov},
     title = {Higher moments in a~model of zero-width slits},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {11--17},
     year = {1991},
     volume = {89},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1991_89_1_a1/}
}
TY  - JOUR
AU  - A. A. Kiselev
AU  - I. Yu. Popov
TI  - Higher moments in a model of zero-width slits
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1991
SP  - 11
EP  - 17
VL  - 89
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1991_89_1_a1/
LA  - ru
ID  - TMF_1991_89_1_a1
ER  - 
%0 Journal Article
%A A. A. Kiselev
%A I. Yu. Popov
%T Higher moments in a model of zero-width slits
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1991
%P 11-17
%V 89
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1991_89_1_a1/
%G ru
%F TMF_1991_89_1_a1
A. A. Kiselev; I. Yu. Popov. Higher moments in a model of zero-width slits. Teoretičeskaâ i matematičeskaâ fizika, Tome 89 (1991) no. 1, pp. 11-17. http://geodesic.mathdoc.fr/item/TMF_1991_89_1_a1/

[1] Demkov Yu. N., Ostrovskii V. N., Metod potentsialov nulevogo radiusa v atomnoi fizike, Izd-vo Leningr. un-ta, L., 1975

[2] Berezin F. A., Faddeev L. D., DAN SSSR, 137:5 (1961), 1011–1014 | MR | Zbl

[3] Albeverio S., Gesztesy F., Høegh-Krohn R., Holden H., Solvable Models in Quantum Mechanics, Springer-Verlag, Berlin–Heidelberg–New York, 1988 | MR | Zbl

[4] Popov I. Yu., “The Extension Theory and Diffraction Problems”, Lecture Notes in Physics, 324, Springer-Verlag, Berlin–Heidelberg–New York, 1989, 218–229 | DOI | MR

[5] Shondin Yu. G., TMF, 74:3 (1988), 331–344 | MR | Zbl

[6] Berezin F. A., Matem. sb., 60:4 (1963), 425–446 | MR

[7] Gotlib V. Yu., DAN SSSR, 287:5 (1986), 1109–1113 | MR

[8] Popov I. Yu., Vestn. Leningr. un-ta, 1984, no. 16, 79–83

[9] Popov I. Yu., DAN SSSR, 294:2, 330–334 | MR

[10] Popov I. Yu., Matem. sb., 181:10 (1990), 1366–1390 | MR