Spectral identities for band spectrum in one-dimensional case
Teoretičeskaâ i matematičeskaâ fizika, Tome 89 (1991) no. 1, pp. 3-10
Voir la notice de l'article provenant de la source Math-Net.Ru
Two models with band spectrum are considered: a one-dimensional lattice
model based on the theory of extensions and a one-dimensional Schrödinger
equation with periodic potential (Hill's equation). Relationships are obtained between the Bloch functions (Floquet solutions), the dispersion, and the effective masses at the edges of the spectral bands, on the one hand, the parameters of the models, on the other.
@article{TMF_1991_89_1_a0,
author = {B. S. Pavlov and S. V. Frolov},
title = {Spectral identities for band spectrum in one-dimensional case},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {3--10},
publisher = {mathdoc},
volume = {89},
number = {1},
year = {1991},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1991_89_1_a0/}
}
B. S. Pavlov; S. V. Frolov. Spectral identities for band spectrum in one-dimensional case. Teoretičeskaâ i matematičeskaâ fizika, Tome 89 (1991) no. 1, pp. 3-10. http://geodesic.mathdoc.fr/item/TMF_1991_89_1_a0/