Spectral identities for band spectrum in one-dimensional case
Teoretičeskaâ i matematičeskaâ fizika, Tome 89 (1991) no. 1, pp. 3-10 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Two models with band spectrum are considered: a one-dimensional lattice model based on the theory of extensions and a one-dimensional Schrödinger equation with periodic potential (Hill's equation). Relationships are obtained between the Bloch functions (Floquet solutions), the dispersion, and the effective masses at the edges of the spectral bands, on the one hand, the parameters of the models, on the other.
@article{TMF_1991_89_1_a0,
     author = {B. S. Pavlov and S. V. Frolov},
     title = {Spectral identities for band spectrum in one-dimensional case},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {3--10},
     year = {1991},
     volume = {89},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1991_89_1_a0/}
}
TY  - JOUR
AU  - B. S. Pavlov
AU  - S. V. Frolov
TI  - Spectral identities for band spectrum in one-dimensional case
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1991
SP  - 3
EP  - 10
VL  - 89
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1991_89_1_a0/
LA  - ru
ID  - TMF_1991_89_1_a0
ER  - 
%0 Journal Article
%A B. S. Pavlov
%A S. V. Frolov
%T Spectral identities for band spectrum in one-dimensional case
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1991
%P 3-10
%V 89
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1991_89_1_a0/
%G ru
%F TMF_1991_89_1_a0
B. S. Pavlov; S. V. Frolov. Spectral identities for band spectrum in one-dimensional case. Teoretičeskaâ i matematičeskaâ fizika, Tome 89 (1991) no. 1, pp. 3-10. http://geodesic.mathdoc.fr/item/TMF_1991_89_1_a0/

[1] Evstratov V. V., Pavlov B. S., “Elektron-fononnoe rasseyanie, polyaron i bipolyaron: yavno reshaemaya model”, Problemy matematicheskoi fiziki, no. 13, LGU, L., 1990

[2] Evstratov V. V., Pavlov B. S., “Lattice models of solids”, Collection of papers, devoted to the memory of R. Hoegh-Krohn, Springer, 1990

[3] Firsova N. E., TMF, 37:2 (1978), 281–288 | MR | Zbl

[4] Firsova N. E., “Rimanova poverkhnost kvaziimpulsa i teoriya rasseyaniya dlya vozmuschennogo operatora Khilla”, Matematicheskie voprosy teorii rasprostraneniya voln, no. 7, Nauka, L., 1975, 183–196 | MR | Zbl

[5] Pavlov B. S., Frolov S. V., TMF, 87:3 (1991), 456–472 | MR | Zbl

[6] Titchmarsh E. Ch., Razlozheniya po sobstvennym funktsiyam, svyazannye s differentsialnymi uravneniyami vtorogo poryadka, T. 2, IL, M., 1961, S. 555. | MR