Evolution of free-energy expansion parameters in the critical region. An~exactly solvable model
Teoretičeskaâ i matematičeskaâ fizika, Tome 88 (1991) no. 3, pp. 442-448

Voir la notice de l'article provenant de la source Math-Net.Ru

The structure of the free-energy expansion of an anisotropic system is investigated in the framework of an exactly solvable model of phase transitions that preserves the interaction of fluctuations with momenta of equal magnitudes and opposite directions. It is shown that the coefficients of the fourth-order form vary with the temperature in the critical region, forming a phase portrait qualitatively similar to the one obtained by the renormalization-group method.
@article{TMF_1991_88_3_a8,
     author = {A. V. Radievsky and A. E. Filippov},
     title = {Evolution of free-energy expansion parameters in the critical region. {An~exactly} solvable model},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {442--448},
     publisher = {mathdoc},
     volume = {88},
     number = {3},
     year = {1991},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1991_88_3_a8/}
}
TY  - JOUR
AU  - A. V. Radievsky
AU  - A. E. Filippov
TI  - Evolution of free-energy expansion parameters in the critical region. An~exactly solvable model
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1991
SP  - 442
EP  - 448
VL  - 88
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1991_88_3_a8/
LA  - ru
ID  - TMF_1991_88_3_a8
ER  - 
%0 Journal Article
%A A. V. Radievsky
%A A. E. Filippov
%T Evolution of free-energy expansion parameters in the critical region. An~exactly solvable model
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1991
%P 442-448
%V 88
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1991_88_3_a8/
%G ru
%F TMF_1991_88_3_a8
A. V. Radievsky; A. E. Filippov. Evolution of free-energy expansion parameters in the critical region. An~exactly solvable model. Teoretičeskaâ i matematičeskaâ fizika, Tome 88 (1991) no. 3, pp. 442-448. http://geodesic.mathdoc.fr/item/TMF_1991_88_3_a8/