Universal expansion of three-particle distribution function
Teoretičeskaâ i matematičeskaâ fizika, Tome 88 (1991) no. 3, pp. 430-441

Voir la notice de l'article provenant de la source Math-Net.Ru

A universal, i.e., not dependent on the Hamiltonian of the two-particle interaction, expansion of the equilibrium three-particle distribution function with respect to the two-particle correlation functions is constructed. A diagram technique that permits systematic calculation of the coefficients of this expansion is proposed. In particular, it is established that allowance for the first four orders in the absence of long-range correlations gives the Kirkwood approximation. Corrections to the Kirkwood approximation both in the presence and absence of long-range correlations are found.
@article{TMF_1991_88_3_a7,
     author = {N. N. Bugaenko and A. N. Gorban' and I. V. Karlin},
     title = {Universal expansion of three-particle distribution function},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {430--441},
     publisher = {mathdoc},
     volume = {88},
     number = {3},
     year = {1991},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1991_88_3_a7/}
}
TY  - JOUR
AU  - N. N. Bugaenko
AU  - A. N. Gorban'
AU  - I. V. Karlin
TI  - Universal expansion of three-particle distribution function
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1991
SP  - 430
EP  - 441
VL  - 88
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1991_88_3_a7/
LA  - ru
ID  - TMF_1991_88_3_a7
ER  - 
%0 Journal Article
%A N. N. Bugaenko
%A A. N. Gorban'
%A I. V. Karlin
%T Universal expansion of three-particle distribution function
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1991
%P 430-441
%V 88
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1991_88_3_a7/
%G ru
%F TMF_1991_88_3_a7
N. N. Bugaenko; A. N. Gorban'; I. V. Karlin. Universal expansion of three-particle distribution function. Teoretičeskaâ i matematičeskaâ fizika, Tome 88 (1991) no. 3, pp. 430-441. http://geodesic.mathdoc.fr/item/TMF_1991_88_3_a7/