Non-Lie integrals of the motion for particles of arbitrary spin and for systems of interacting particles
Teoretičeskaâ i matematičeskaâ fizika, Tome 88 (1991) no. 3, pp. 406-415

Voir la notice de l'article provenant de la source Math-Net.Ru

New integrals of the motion are found for the Kemmer–Duffin–Petiau, Rarita–Schwinger, Dirac–Fierz–Pauli, and Bhabha equations describing minimal and anomalous coupling of particles of spin $s\leqslant 2$ with the field of a point charge and also for a number of relativistic and quasirelativistic two- and three-particle equations. These integrals belong to the class of differential operators of order $2s$ with matrix coefficients and have a discrete spectrum.
@article{TMF_1991_88_3_a5,
     author = {A. G. Nikitin and W. I. Fushchych},
     title = {Non-Lie integrals of the motion for particles of arbitrary spin and for systems of interacting particles},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {406--415},
     publisher = {mathdoc},
     volume = {88},
     number = {3},
     year = {1991},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1991_88_3_a5/}
}
TY  - JOUR
AU  - A. G. Nikitin
AU  - W. I. Fushchych
TI  - Non-Lie integrals of the motion for particles of arbitrary spin and for systems of interacting particles
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1991
SP  - 406
EP  - 415
VL  - 88
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1991_88_3_a5/
LA  - ru
ID  - TMF_1991_88_3_a5
ER  - 
%0 Journal Article
%A A. G. Nikitin
%A W. I. Fushchych
%T Non-Lie integrals of the motion for particles of arbitrary spin and for systems of interacting particles
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1991
%P 406-415
%V 88
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1991_88_3_a5/
%G ru
%F TMF_1991_88_3_a5
A. G. Nikitin; W. I. Fushchych. Non-Lie integrals of the motion for particles of arbitrary spin and for systems of interacting particles. Teoretičeskaâ i matematičeskaâ fizika, Tome 88 (1991) no. 3, pp. 406-415. http://geodesic.mathdoc.fr/item/TMF_1991_88_3_a5/