New method of solution of the one-dimensional Schr\"odinger equation
Teoretičeskaâ i matematičeskaâ fizika, Tome 88 (1991) no. 3, pp. 477-480

Voir la notice de l'article provenant de la source Math-Net.Ru

The potential in the Schrödinger equation is divided by gaps of infinitesimal width into individual potential barriers, the tops of which are approximated by quadratic potentials. For each barrier, the total wave function within the barrier is found, and also the reflection and transmission amplitudes. The method of recursion relations is then used to construct the reflection amplitude for the complete potential, it being expressed in terms of the amplitudes of the individual potential barriers in the form of a continued fraction. The transmission amplitude for the complete potential and the wave function at any given part of the potential are found similarly.
@article{TMF_1991_88_3_a12,
     author = {V. K. Ignatovich},
     title = {New method of solution of the one-dimensional {Schr\"odinger} equation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {477--480},
     publisher = {mathdoc},
     volume = {88},
     number = {3},
     year = {1991},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1991_88_3_a12/}
}
TY  - JOUR
AU  - V. K. Ignatovich
TI  - New method of solution of the one-dimensional Schr\"odinger equation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1991
SP  - 477
EP  - 480
VL  - 88
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1991_88_3_a12/
LA  - ru
ID  - TMF_1991_88_3_a12
ER  - 
%0 Journal Article
%A V. K. Ignatovich
%T New method of solution of the one-dimensional Schr\"odinger equation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1991
%P 477-480
%V 88
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1991_88_3_a12/
%G ru
%F TMF_1991_88_3_a12
V. K. Ignatovich. New method of solution of the one-dimensional Schr\"odinger equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 88 (1991) no. 3, pp. 477-480. http://geodesic.mathdoc.fr/item/TMF_1991_88_3_a12/