Equations for two-point correlation functions on compact Riemann surfaces
Teoretičeskaâ i matematičeskaâ fizika, Tome 88 (1991) no. 3, pp. 323-332 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The general structure of the regularized scalar Green's function on compact Riemann surfaces is investigated. Equations that relate the second (and higher) derivatives of the scalar propagator to the first derivatives are obtained.
@article{TMF_1991_88_3_a0,
     author = {S. M. Kuzenko and O. A. Solov'ev},
     title = {Equations for two-point correlation functions on compact {Riemann} surfaces},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {323--332},
     year = {1991},
     volume = {88},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1991_88_3_a0/}
}
TY  - JOUR
AU  - S. M. Kuzenko
AU  - O. A. Solov'ev
TI  - Equations for two-point correlation functions on compact Riemann surfaces
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1991
SP  - 323
EP  - 332
VL  - 88
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1991_88_3_a0/
LA  - ru
ID  - TMF_1991_88_3_a0
ER  - 
%0 Journal Article
%A S. M. Kuzenko
%A O. A. Solov'ev
%T Equations for two-point correlation functions on compact Riemann surfaces
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1991
%P 323-332
%V 88
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1991_88_3_a0/
%G ru
%F TMF_1991_88_3_a0
S. M. Kuzenko; O. A. Solov'ev. Equations for two-point correlation functions on compact Riemann surfaces. Teoretičeskaâ i matematičeskaâ fizika, Tome 88 (1991) no. 3, pp. 323-332. http://geodesic.mathdoc.fr/item/TMF_1991_88_3_a0/

[1] Belavin A. A., Polyakov A. M., Zamolodchikov A. B., Nucl. Phys., B241:2 (1984), 333–372 ; Knizhnik V. G., Zamolodchikov A. B., Nucl. Phys., B247:1 (1984), 83–117 ; Mathur S., Mukhi S., Sen A., Nucl. Phys., B312:1 (1989), 15–57 | DOI | MR | DOI | MR | DOI

[2] Eguchi T., Ooguri H., Nucl. Phys., B282:2 (1986), 308–328 | MR

[3] D'Hoker E., Phong D. H., Rev. Mod. Phys., 60:4 (1988), 917–1065 | DOI | MR

[4] Hamada K.-J., Takao M., Nucl. Phys., B313:1 (1989), 80–94 | DOI | MR

[5] Alvarez-Haume L., Moore G., Vafa C., Commun. Math. Phys., 106:1 (1986), 1–14 | DOI | MR

[6] Verlinde E., Verlinde H., Nucl. Phys., B288:2 (1987), 357–396 | DOI | MR

[7] Dugan M. I., Sonoda H., Nucl. Phys., B289:2 (1987), 227–252 | DOI | MR

[8] Mamford D., Lektsii o teta-funktsiyakh, Mir, M., 1988 | MR

[9] Polyakov A. M., Phys. Lett., 103B:3 (1981), 207–210 | DOI | MR

[10] Ranjibar-Daemi S., Salam A., Strathdee I. A., Int. J. Mol. Phys., A2:4 (1987), 667–680 | DOI

[11] Knizhnik V. G., Mnogopetlevye amplitudy v teorii kvantovykh strun i kompleksnaya geometriya. Yavnye formuly dlya mery cherez teta-funktsii, Preprint ITF-87-61R, ITF, Kiev, 1987

[12] Kuzenko S. M., Solovev O. A., YaF, 51:2 (1990), 585–590 | MR

[13] Ooguri H., Sakai N., Nucl. Phys., B312:3 (1988), 435–491 | MR