Solution of Bloch equation in the Weyl representation
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 88 (1991) no. 2, pp. 314-319
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The Weyl symbol of the operator exponential $\exp\{-\beta[(2\mu)^{-1}\hat{p^2}+V\hat{(q)}]\}$
is regarded as a solution of the Bloch equation in the phase space.
The unperturbed equation is separated in accordance with the $\hbar$ expansion
of the product of Weyl symbols. The exact solution and Green's function of the unperturbed Bloch equation are found in analytic form. An iterative procedure for constructing the perturbation-theory series is proposed.
			
            
            
            
          
        
      @article{TMF_1991_88_2_a9,
     author = {V. V. Kudryashov},
     title = {Solution of {Bloch} equation in the {Weyl} representation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {314--319},
     publisher = {mathdoc},
     volume = {88},
     number = {2},
     year = {1991},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1991_88_2_a9/}
}
                      
                      
                    V. V. Kudryashov. Solution of Bloch equation in the Weyl representation. Teoretičeskaâ i matematičeskaâ fizika, Tome 88 (1991) no. 2, pp. 314-319. http://geodesic.mathdoc.fr/item/TMF_1991_88_2_a9/
