Solution of Bloch equation in the Weyl representation
Teoretičeskaâ i matematičeskaâ fizika, Tome 88 (1991) no. 2, pp. 314-319
Cet article a éte moissonné depuis la source Math-Net.Ru
The Weyl symbol of the operator exponential $\exp\{-\beta[(2\mu)^{-1}\hat{p^2}+V\hat{(q)}]\}$ is regarded as a solution of the Bloch equation in the phase space. The unperturbed equation is separated in accordance with the $\hbar$ expansion of the product of Weyl symbols. The exact solution and Green's function of the unperturbed Bloch equation are found in analytic form. An iterative procedure for constructing the perturbation-theory series is proposed.
@article{TMF_1991_88_2_a9,
author = {V. V. Kudryashov},
title = {Solution of {Bloch} equation in the {Weyl} representation},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {314--319},
year = {1991},
volume = {88},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1991_88_2_a9/}
}
V. V. Kudryashov. Solution of Bloch equation in the Weyl representation. Teoretičeskaâ i matematičeskaâ fizika, Tome 88 (1991) no. 2, pp. 314-319. http://geodesic.mathdoc.fr/item/TMF_1991_88_2_a9/
[1] Shirokov Yu. M., EChAYa, 10:1 (1979), 5–50 | MR
[2] Berezin F. A., Shubin M. A., Uravnenie Shredingera, MGU, M., 1983 | MR
[3] Balazs N. L., Jennigs B. K., Phys. Rep., 104:6 (1984), 347–391 | DOI | MR
[4] Hillery M., O'Connell R. F., Scully M. O., Wigner E. P., Phys. Rep., 106:3 (1984), 121–167 | DOI | MR
[5] O'Connell R. F., Wang L., Phys. Rev., A31:3 (1985), 1707–1711 | DOI | MR
[6] Smith T. B., J. Phys. A: Math. Gen., 11:11 (1978), 2179–2190 | DOI | MR
[7] Marinov M. S., Phys. Rep., 60:1 (1980), 1–57 | DOI | MR
[8] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii, T. 2, Nauka, M., 1966 | MR