Inequalities for thermodynamic mean values of operator products
Teoretičeskaâ i matematičeskaâ fizika, Tome 88 (1991) no. 2, pp. 311-313
Cet article a éte moissonné depuis la source Math-Net.Ru
Some inequalities for correlation functions are proposed. Upper and lower bounds for the ratio $\langle\{A,A^+\}\rangle/\langle[A,A^+]\rangle$ are determined.
@article{TMF_1991_88_2_a8,
author = {R. Kh. Sabirov},
title = {Inequalities for thermodynamic mean values of operator products},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {311--313},
year = {1991},
volume = {88},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1991_88_2_a8/}
}
R. Kh. Sabirov. Inequalities for thermodynamic mean values of operator products. Teoretičeskaâ i matematičeskaâ fizika, Tome 88 (1991) no. 2, pp. 311-313. http://geodesic.mathdoc.fr/item/TMF_1991_88_2_a8/
[1] Bogolyubov N. N. (ml.), Sadovnikov B. I., Nekotorye voprosy statisticheskoi mekhaniki, Vysshaya shkola, M., 1975 | MR
[2] Bogolyubov N. N. (ml.), Sadovnikov B. I., Shumovskii A. S., Matematicheskie metody statisticheskoi mekhaniki modelnykh sistem, Nauka, M., 1989 | MR
[3] Bogolyubov N. N., Kvazisrednie v zadachakh statisticheskoi mekhaniki, Preprint R-1451, OIYaI, Dubna, 1963
[4] Ryuel D., Statisticheskaya mekhanika. Strogie rezultaty, Mir, M., 1971
[5] Falk H., Bruch L. W., Phys. Rev., 180:2 (1969), 442–444 | DOI
[6] Roepstorff G., Commun. Math. Phys., 43:3 (1976), 253–262 | DOI | MR
[7] Nigmatullin R. R., TMF, 28:3 (1976), 398–410
[8] Harris A. B., J. Math. Phys., 8:5 (1967), 1044–1045 | DOI