Debye-Hückel limit for charge-symmetric quantum-statistical Coulomb systems
Teoretičeskaâ i matematičeskaâ fizika, Tome 88 (1991) no. 2, pp. 260-271 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Charge-symmetric quantum Coulomb systems with Bose–Einstein and Fermi–Dirac statistics are considered. It is shown that the screening theory of Debye and Hfickel is obtained as a combination of the mean-field limit and the classical limit of these systems.
@article{TMF_1991_88_2_a5,
     author = {V. V. Gorunovich},
     title = {Debye-H\"uckel limit for charge-symmetric quantum-statistical {Coulomb} systems},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {260--271},
     year = {1991},
     volume = {88},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1991_88_2_a5/}
}
TY  - JOUR
AU  - V. V. Gorunovich
TI  - Debye-Hückel limit for charge-symmetric quantum-statistical Coulomb systems
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1991
SP  - 260
EP  - 271
VL  - 88
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1991_88_2_a5/
LA  - ru
ID  - TMF_1991_88_2_a5
ER  - 
%0 Journal Article
%A V. V. Gorunovich
%T Debye-Hückel limit for charge-symmetric quantum-statistical Coulomb systems
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1991
%P 260-271
%V 88
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1991_88_2_a5/
%G ru
%F TMF_1991_88_2_a5
V. V. Gorunovich. Debye-Hückel limit for charge-symmetric quantum-statistical Coulomb systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 88 (1991) no. 2, pp. 260-271. http://geodesic.mathdoc.fr/item/TMF_1991_88_2_a5/

[1] Rebenko A. L., UMN, 43:3 (1988), 55–97 | MR

[2] Brydges D., Federbush P., Commun. Math. Phys., 49 (1976), 233–246 | DOI | MR

[3] Kennedy T., Commun. Math. Phys., 92:2 (1983), 269–294 | DOI | MR | Zbl

[4] Fontaine J. R., Commun. Math. Phys., 103:2 (1986), 241–257 | DOI | MR | Zbl

[5] Ginibre J., “Some applications of functional integration in statistical mechanics”, Statistical mechanics and quantum field theory. Les Houches. 1970, eds. de Witt C., Stora, Gordon and Breach, New York, 1971 | MR | Zbl

[6] Fröhlich J., Park Y. M., Commun. Math. Phys., 59:2 (1978), 235–266 | DOI | MR