Invariant states for time dynamics of one-dimensional lattice quantum fermi systems
Teoretičeskaâ i matematičeskaâ fizika, Tome 88 (1991) no. 2, pp. 247-259 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A study is made of the problem of describing the set of invariant states for the time dynamics corresponding to a (formal) Hamiltonian $H_0$ of a one-dimensional lattice quantum Fermi system. Assuming that the invariant state $\varphi$ is a KMS state for some “Hamiltonian” $H$, we prove that $H$ is proportional to $H_0$, i.e., that $\varphi$ is a KMS state for $\beta H_0$. As a consequence, in the considered situation every “natural” invariant state is an equilibrium Gibbs state. Use is made here of the condition that $H_0$ is not a quadratic form in the creation and annihilation operators. In such a case the time dynamics admits a much richer set of invariant states. If all terms in $H_0$ except the quadratic ones are diagonal, it can be shown that $H=\beta H_0+N$. Here, $N$ is an arbitrary diagonal quadratic form.
@article{TMF_1991_88_2_a4,
     author = {N. E. Ratanov and Yu. M. Sukhov},
     title = {Invariant states for time dynamics of one-dimensional lattice quantum fermi systems},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {247--259},
     year = {1991},
     volume = {88},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1991_88_2_a4/}
}
TY  - JOUR
AU  - N. E. Ratanov
AU  - Yu. M. Sukhov
TI  - Invariant states for time dynamics of one-dimensional lattice quantum fermi systems
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1991
SP  - 247
EP  - 259
VL  - 88
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1991_88_2_a4/
LA  - ru
ID  - TMF_1991_88_2_a4
ER  - 
%0 Journal Article
%A N. E. Ratanov
%A Yu. M. Sukhov
%T Invariant states for time dynamics of one-dimensional lattice quantum fermi systems
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1991
%P 247-259
%V 88
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1991_88_2_a4/
%G ru
%F TMF_1991_88_2_a4
N. E. Ratanov; Yu. M. Sukhov. Invariant states for time dynamics of one-dimensional lattice quantum fermi systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 88 (1991) no. 2, pp. 247-259. http://geodesic.mathdoc.fr/item/TMF_1991_88_2_a4/

[1] Lanford O. E., Robinson D. W., Commun. Math. Phys., 24 (1972), 193–210 | DOI | MR

[2] Dobrushin R. L., Sukhov Yu. M., Itogi nauki i tekhn. VINITI AN SSSR. Sovrem. probl. matematiki, 14, VINITI, M., 1979, 147–254 ; Boldrighini C., Dobrushin R. L., Suhov Yu. M., Time asymptotics for some degenerate models of evolution for systems with of infinitely many particles, Preprint Camerino University (Italy), 1980 | MR

[3] Boldrighini C., Pellegrinotti P., Triolo L., J. Stat. Phys., 30 (1983), 123–155 | DOI | MR

[4] Sukhov Yu. M., Izv. AN SSSR. Ser. matem., 48 (1984), 155–191 | MR

[5] Chulaevskii V. A., Funkts. analiz i ego prilozh., 17:1 (1983), 53–62 | MR

[6] Araki H., Barouch E., J. Stat. Phys., 31 (1983), 327–345 | DOI | MR | Zbl

[7] Botvich D. D., Malyshev V. A., Commun. Math. Phys., 91 (1983), 301–312 | DOI | MR | Zbl

[8] Sukhov Yu. M., Shukhov A. G., TMF, 73:1 (1987), 125–140 | MR

[9] Haag R., Kastler D., Trych-Pohlmeyer E. B., Commun. Math. Phys., 38 (1974), 173–193 | DOI | MR

[10] Haag R., Trych-Pohlmeyer E. B., Commun. Math. Phys., 56 (1977), 213–244 | DOI | MR

[11] Gallavotti G., Pulvirenti M., Commun. Math. Phys., 46 (1976), 1–9 | DOI | MR | Zbl

[12] Gurevich B. M., Suhov Yu. M., Commun. Math. Phys., 49 (1976), 63–96 ; 54 (1977), 81–96 ; 56, 225–236 ; 84 (1982), 333–376 | DOI | MR | DOI | MR | Zbl | DOI | MR | DOI | MR

[13] Martirosyan O. G., TMF, 76:2 (1988), 261–271 | MR

[14] Gurevich B. M., Tr. MMO, 52, 1989, 175–228 | MR | Zbl

[15] Anshelevich V. V., Goldshtein M. Sh., Itogi nauki i tekhn. VINITI AN SSSR. Sovremennye problemy matematiki. Noveishie dostizheniya, 27, VINITI, M., 1985, 191–228 | MR

[16] Bratteli O., Robinson D. W., Operator Algebras and Quantum Statistical Mechanics, V. 1, Springer-Verlag, New York et al., 1979 ; Bratteli U., Robinson D., Operatornye algebry i kvantovaya statisticheskaya mekhanika, Mir, M., 1982 | MR | Zbl | MR | Zbl

[17] Bratteli O., Robinson D. W., Operator Algebras and Quantum Statistical Mechanics, V. 2, Springer-Verlag, New York et al., 1981 | MR | Zbl

[18] Gurevich B. M., Sinai Ya. G., Sukhov Yu. M., UMN, 28:5 (1973), 45–82 | MR | Zbl

[19] Sirugue M., Winnink M., Commun. Math. Phys., 19 (1970), 161–168 | DOI | MR | Zbl