@article{TMF_1991_88_1_a9,
author = {S. K. Suslov},
title = {On~the theory of $9j$~symbols},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {66--71},
year = {1991},
volume = {88},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1991_88_1_a9/}
}
S. K. Suslov. On the theory of $9j$ symbols. Teoretičeskaâ i matematičeskaâ fizika, Tome 88 (1991) no. 1, pp. 66-71. http://geodesic.mathdoc.fr/item/TMF_1991_88_1_a9/
[1] Karasev V. P., Shelepin L. A., Tr. FIAN, 87, 1976, 55–91 | MR
[2] Koornwinder T. H., Nieuw Archief voor Wiskunde (3), 29:2 (1981), 140–155 | MR | Zbl
[3] Smorodinskii Ya. A., Suslov S. K., YaF, 35:1 (1982), 192–201 | MR
[4] Wilson J. A., SIAM J. Math. Anal., 11:4 (1980), 690–701 | DOI | MR | Zbl
[5] Smorodinskii Ya. A., Suslov S. K., YaF, 36:4 (1982), 1066–1071 | MR
[6] Nikiforov A. F., Suslov S. K., Uvarov V. B., Klassicheskie ortogonalnye polinomy diskretnoi peremennoi, Nauka, M., 1985 | MR
[7] Kirillov A. N., Reshetikhin N. Yu., Representations of the algebra $U_q(\mathrm{sl}(2))$, $q$-orthogonal polynomials and invariants of links, Preprints E-9-88, LOMI, Leningrad, 1988 | MR
[8] Koornwinder T. H., Orthogonal Polynomials: Theory and Practice, NATO ASI Series, ed. P. Nevai, Kluwer Academic Publishers, 1990 | MR
[9] Suslov S. K., YaF, 38:10 (1983), 1102–1104 | MR | Zbl
[10] Varshalovich D. A., Moskalev A. N., Khersonskii V. K., Kvantovaya teoriya uglovogo momenta, Nauka, L., 1975
[11] Bidenkharn L., Lauk Dzh., Uglovoi moment v kvantovoi fizike, T. 1, 2, Mir, M., 1984
[12] Jang S., J. Math. Phys., 9:3 (1968), 397–402 | DOI | MR