On the theory of $9j$ symbols
Teoretičeskaâ i matematičeskaâ fizika, Tome 88 (1991) no. 1, pp. 66-71 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The basic properties of the polynomials of two variables associated with the $9j$ symbols are established on the basis of the quantum theory of angular momentum.
@article{TMF_1991_88_1_a9,
     author = {S. K. Suslov},
     title = {On~the theory of $9j$~symbols},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {66--71},
     year = {1991},
     volume = {88},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1991_88_1_a9/}
}
TY  - JOUR
AU  - S. K. Suslov
TI  - On the theory of $9j$ symbols
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1991
SP  - 66
EP  - 71
VL  - 88
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1991_88_1_a9/
LA  - ru
ID  - TMF_1991_88_1_a9
ER  - 
%0 Journal Article
%A S. K. Suslov
%T On the theory of $9j$ symbols
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1991
%P 66-71
%V 88
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1991_88_1_a9/
%G ru
%F TMF_1991_88_1_a9
S. K. Suslov. On the theory of $9j$ symbols. Teoretičeskaâ i matematičeskaâ fizika, Tome 88 (1991) no. 1, pp. 66-71. http://geodesic.mathdoc.fr/item/TMF_1991_88_1_a9/

[1] Karasev V. P., Shelepin L. A., Tr. FIAN, 87, 1976, 55–91 | MR

[2] Koornwinder T. H., Nieuw Archief voor Wiskunde (3), 29:2 (1981), 140–155 | MR | Zbl

[3] Smorodinskii Ya. A., Suslov S. K., YaF, 35:1 (1982), 192–201 | MR

[4] Wilson J. A., SIAM J. Math. Anal., 11:4 (1980), 690–701 | DOI | MR | Zbl

[5] Smorodinskii Ya. A., Suslov S. K., YaF, 36:4 (1982), 1066–1071 | MR

[6] Nikiforov A. F., Suslov S. K., Uvarov V. B., Klassicheskie ortogonalnye polinomy diskretnoi peremennoi, Nauka, M., 1985 | MR

[7] Kirillov A. N., Reshetikhin N. Yu., Representations of the algebra $U_q(\mathrm{sl}(2))$, $q$-orthogonal polynomials and invariants of links, Preprints E-9-88, LOMI, Leningrad, 1988 | MR

[8] Koornwinder T. H., Orthogonal Polynomials: Theory and Practice, NATO ASI Series, ed. P. Nevai, Kluwer Academic Publishers, 1990 | MR

[9] Suslov S. K., YaF, 38:10 (1983), 1102–1104 | MR | Zbl

[10] Varshalovich D. A., Moskalev A. N., Khersonskii V. K., Kvantovaya teoriya uglovogo momenta, Nauka, L., 1975

[11] Bidenkharn L., Lauk Dzh., Uglovoi moment v kvantovoi fizike, T. 1, 2, Mir, M., 1984

[12] Jang S., J. Math. Phys., 9:3 (1968), 397–402 | DOI | MR