Nodes of eigenfunctions of a~many-particle Schr\"odinger equation
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 88 (1991) no. 1, pp. 46-58
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The properties of the node manifolds of the eigenfunctions of the
$N$-electron Schrödinger operator are discussed. A connection is
established between the symmetry properties of the wave function
with respect to permutations of the electrons and the number of
regions into which the node manifolds of the wave function divide
the $3N$-dimensional Euclidean space.
			
            
            
            
          
        
      @article{TMF_1991_88_1_a7,
     author = {E. A. Smolenskii and I. V. Stankevich},
     title = {Nodes of eigenfunctions of a~many-particle {Schr\"odinger} equation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {46--58},
     publisher = {mathdoc},
     volume = {88},
     number = {1},
     year = {1991},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1991_88_1_a7/}
}
                      
                      
                    TY - JOUR AU - E. A. Smolenskii AU - I. V. Stankevich TI - Nodes of eigenfunctions of a~many-particle Schr\"odinger equation JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1991 SP - 46 EP - 58 VL - 88 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1991_88_1_a7/ LA - ru ID - TMF_1991_88_1_a7 ER -
E. A. Smolenskii; I. V. Stankevich. Nodes of eigenfunctions of a~many-particle Schr\"odinger equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 88 (1991) no. 1, pp. 46-58. http://geodesic.mathdoc.fr/item/TMF_1991_88_1_a7/
