Nodes of eigenfunctions of a many-particle Schrödinger equation
Teoretičeskaâ i matematičeskaâ fizika, Tome 88 (1991) no. 1, pp. 46-58 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The properties of the node manifolds of the eigenfunctions of the $N$-electron Schrödinger operator are discussed. A connection is established between the symmetry properties of the wave function with respect to permutations of the electrons and the number of regions into which the node manifolds of the wave function divide the $3N$-dimensional Euclidean space.
@article{TMF_1991_88_1_a7,
     author = {E. A. Smolenskii and I. V. Stankevich},
     title = {Nodes of eigenfunctions of a~many-particle {Schr\"odinger} equation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {46--58},
     year = {1991},
     volume = {88},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1991_88_1_a7/}
}
TY  - JOUR
AU  - E. A. Smolenskii
AU  - I. V. Stankevich
TI  - Nodes of eigenfunctions of a many-particle Schrödinger equation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1991
SP  - 46
EP  - 58
VL  - 88
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1991_88_1_a7/
LA  - ru
ID  - TMF_1991_88_1_a7
ER  - 
%0 Journal Article
%A E. A. Smolenskii
%A I. V. Stankevich
%T Nodes of eigenfunctions of a many-particle Schrödinger equation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1991
%P 46-58
%V 88
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1991_88_1_a7/
%G ru
%F TMF_1991_88_1_a7
E. A. Smolenskii; I. V. Stankevich. Nodes of eigenfunctions of a many-particle Schrödinger equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 88 (1991) no. 1, pp. 46-58. http://geodesic.mathdoc.fr/item/TMF_1991_88_1_a7/

[1] Kato T., Trans. Amer. Math. Soc., 70:2 (1951), 195–211 | DOI | MR | Zbl

[2] Kato T., Trans. Amer. Math. Soc., 70:2 (1951), 212–219 | DOI | MR

[3] Kato T., Commun. Pure and Appl. Math., 10:2 (1957), 151–177 | DOI | MR | Zbl

[4] Zhislin G. M., Dokl. AN SSSR, 128:2 (1959), 231–234 | MR | Zbl

[5] Zhislin G. M., Tr. Mosk. matem. ob-va, 9, 1960, 81–120 | MR | Zbl

[6] Zhislin G. M., Sigalov A. G., Izv. AN SSSR. Ser. matem., 29 (1965), 835–860 | MR | Zbl

[7] Zhislin G. M., Dokl. AN SSSR, 175:3 (1967), 521–524 | MR | Zbl

[8] Iorgens K., Vaidman I., Spektralnye svoistva gamiltonovykh operatorov, Mir, M., 1976 | MR

[9] Kurant R., Gilbert D., Metody matematicheskoi fiziki, T. 1, Gostekhizdat, M.–L., 1951 | MR

[10] Zhislin G. M., UMN, XVI:1(97) (1961), 149–152 | Zbl

[11] Smolenskii E. A., Dokl. AN SSSR, 304 (1989), 595–598

[12] Smolenskii E. A., Dokl. AN SSSR, 289:3 (1986), 664–668 | MR

[13] Vigner E., Teoriya grupp i ee prilozheniya k kvantovo-mekhanicheskoi teorii atomnykh spektrov, IL, M., 1961 | MR

[14] Khammermesh M., Teoriya grupp i ee primenenii k fizicheskim problemam, Mir, M., 1966

[15] Messia A., Kvantovaya mekhanika, T. 2, Nauka, M., 1979 | MR

[16] Bochvar D. A., Stankevich I. V., ZhFKh, 38 (1964)

[17] Wilson E. B., J. Chem. Phys., 63 (1975), 4870–4879 | DOI | MR