Oscillator with centrifugal barrier. Inverse problem
Teoretičeskaâ i matematičeskaâ fizika, Tome 88 (1991) no. 1, pp. 37-45 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Physical arguments are used to justify a method for choosing even solutions for an oscillator with barrier (well) $\lambda x^{-2}$. A rule for continuing solutions of the Schrödinger equation through this barrier is formulated. An integral Gel'fand–Levitan equation is obtained on the basis of this rule, and the inverse problem is solved in some special cases.
@article{TMF_1991_88_1_a6,
     author = {V. B. Gostev and A. R. Frenkin},
     title = {Oscillator with centrifugal barrier. {Inverse} problem},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {37--45},
     year = {1991},
     volume = {88},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1991_88_1_a6/}
}
TY  - JOUR
AU  - V. B. Gostev
AU  - A. R. Frenkin
TI  - Oscillator with centrifugal barrier. Inverse problem
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1991
SP  - 37
EP  - 45
VL  - 88
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1991_88_1_a6/
LA  - ru
ID  - TMF_1991_88_1_a6
ER  - 
%0 Journal Article
%A V. B. Gostev
%A A. R. Frenkin
%T Oscillator with centrifugal barrier. Inverse problem
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1991
%P 37-45
%V 88
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1991_88_1_a6/
%G ru
%F TMF_1991_88_1_a6
V. B. Gostev; A. R. Frenkin. Oscillator with centrifugal barrier. Inverse problem. Teoretičeskaâ i matematičeskaâ fizika, Tome 88 (1991) no. 1, pp. 37-45. http://geodesic.mathdoc.fr/item/TMF_1991_88_1_a6/

[1] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki, T. 4, Mir, M., 1982, Gl. XII. | MR

[2] Harrel E., Ann. Phys., 105 (1977), 379–406 | DOI | MR | Zbl

[3] Moss R. E., Am. J. Phys., 55 (1987), 397–405 | DOI

[4] Dittrich I., Exner P., J. Math. Phys., 26 (1985), 2000–2008 | DOI | MR | Zbl

[5] Landau L. D., Lifshits E. M., Kvantovaya mekhanika, Nauka, M., 1989 | MR

[6] Perelomov A. M., Obobschennye kogerentnye sostoyaniya i primeneniya, Nauka, M., 1987, S. 164–175. | MR

[7] Gostev V. B., Mineev V. S., Frenkin A. R., TMF, 68:1 (1986), 45–57 | MR

[8] Gostev V. B., Frenkin A. R., Vestn. MGU. Ser. 3. Fizika, astronomiya, 28:3 (1987), 85–87 | MR

[9] Gostev V. B., Frenkin A. R., Izv. vuzov. Fizika, 1989, no. 10, 85–89

[10] Calogero F., J. Math. Phys., 10 (1969), 2191–2220 | DOI | MR

[11] Klauder J., Acta Phys. Austriaca Suppl., 11 (1973), 341–387

[12] Malkin I. A., Manko V. I., Dinamicheskie simmetrii i kogerentnye sostoyaniya kvantovykh sistem, Nauka, M., 1979, S. 109. | MR

[13] Gostev V. B., Peres-Fernandes V. K., Frenkin A. R., Chizhov G. A., Vestn. MGU. Ser. 3, Fizika, astronomiya, 30:4 (1989), 22–25 | MR

[14] Mors F. M., Feshbakh G., Metody teoreticheskoi fiziki, t. II, IL, M., 1960, S. 595–596. | MR

[15] Dodonov V. V., Manko V. I., Tr. FIAN, 183, 1987, 3–71

[16] Shadan K., Sabate P., Obratnye zadachi v kvantovoi teorii rasseyaniya, Mir, M., 1980 | MR

[17] Gostev V. B., Frenkin A. R., TMF, 62:3 (1985), 472–480 | MR

[18] M. Abramovits, I. Stigan (red.), Spravochnik po spetsialnym funktsiyam, Nauka, M., 1979, S. 321–354. | MR

[19] Fon Neiman I., Matematicheskie osnovy kvantovoi mekhaniki, Nauka, M., 1964, S. 72. | MR

[20] Abraham P. B., Moses H. E., Phys. Rev., A22 (1980), 1333–1340 | DOI | MR

[21] Gostev V. B., Mineev V. S., Frenkin A. R., TMF, 56 (1983), 74–79 | MR

[22] Gostev V. B., Frenkin A. R., TMF, 74 (1988), 247–258 | MR