Functional integral method for gibbs systems with many-body potentials.~I
Teoretičeskaâ i matematičeskaâ fizika, Tome 88 (1991) no. 1, pp. 115-121

Voir la notice de l'article provenant de la source Math-Net.Ru

A functional integral representation is found for the grand partition function for classical Gibbs systems with very simple many-particle interaction potentials.
@article{TMF_1991_88_1_a14,
     author = {V. I. Skripnik},
     title = {Functional integral method for gibbs systems with many-body {potentials.~I}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {115--121},
     publisher = {mathdoc},
     volume = {88},
     number = {1},
     year = {1991},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1991_88_1_a14/}
}
TY  - JOUR
AU  - V. I. Skripnik
TI  - Functional integral method for gibbs systems with many-body potentials.~I
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1991
SP  - 115
EP  - 121
VL  - 88
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1991_88_1_a14/
LA  - ru
ID  - TMF_1991_88_1_a14
ER  - 
%0 Journal Article
%A V. I. Skripnik
%T Functional integral method for gibbs systems with many-body potentials.~I
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1991
%P 115-121
%V 88
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1991_88_1_a14/
%G ru
%F TMF_1991_88_1_a14
V. I. Skripnik. Functional integral method for gibbs systems with many-body potentials.~I. Teoretičeskaâ i matematičeskaâ fizika, Tome 88 (1991) no. 1, pp. 115-121. http://geodesic.mathdoc.fr/item/TMF_1991_88_1_a14/