Functional integral method for gibbs systems with many-body potentials. I
Teoretičeskaâ i matematičeskaâ fizika, Tome 88 (1991) no. 1, pp. 115-121 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A functional integral representation is found for the grand partition function for classical Gibbs systems with very simple many-particle interaction potentials.
@article{TMF_1991_88_1_a14,
     author = {V. I. Skripnik},
     title = {Functional integral method for gibbs systems with many-body {potentials.~I}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {115--121},
     year = {1991},
     volume = {88},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1991_88_1_a14/}
}
TY  - JOUR
AU  - V. I. Skripnik
TI  - Functional integral method for gibbs systems with many-body potentials. I
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1991
SP  - 115
EP  - 121
VL  - 88
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1991_88_1_a14/
LA  - ru
ID  - TMF_1991_88_1_a14
ER  - 
%0 Journal Article
%A V. I. Skripnik
%T Functional integral method for gibbs systems with many-body potentials. I
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1991
%P 115-121
%V 88
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1991_88_1_a14/
%G ru
%F TMF_1991_88_1_a14
V. I. Skripnik. Functional integral method for gibbs systems with many-body potentials. I. Teoretičeskaâ i matematičeskaâ fizika, Tome 88 (1991) no. 1, pp. 115-121. http://geodesic.mathdoc.fr/item/TMF_1991_88_1_a14/

[1] Siegert A. J. F., Physica, 26 (1960), 30 | DOI | Zbl

[2] Skripnik V. I., TMF, 29:3 (1976), 323–335 | MR

[3] Brydges D. C., Commun. Math. Phys., 58 (1978), 313 | DOI | MR

[4] Skrypnik W. I., On the functional integrals associated to special Gibbs systems with three-body potentials, Preprint of the Dublin Institute of Advanced Study DIAS-STP 89-33, Dublin, 1989 | MR

[5] Skripnik V. I., TMF, 79:1 (1989), 127–134 | MR

[6] Daletskii Yu. L., Fomin S. V., Mery i differentsialnye uravneniya v beskonechnomernykh prostranstvakh, Nauka, M., 1983 | MR

[7] Glimm Dzh., Dzhaffe A., Matematicheskie metody kvantovoi fiziki. Podkhod s ispolzovaniem funktsionalnykh integralov, Mir, M., 1984 | MR | Zbl