Formulation of three-dimensional field-theoretical equations for two-particle scattering reactions
Teoretičeskaâ i matematičeskaâ fizika, Tome 88 (1991) no. 1, pp. 85-95 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Field-theoretical Low-type equations are used to derive equivalent relativistic equations of Lippmann–Schwinger type for the problem of elastic $NN$ scattering. The connection between the Low-type equations and the Medvedev–Polivanov equations in the axiomatic $S$-matrix method of field theory is established. Integral equations are compared with quasipotential equations.
@article{TMF_1991_88_1_a11,
     author = {A. I. Machavariani},
     title = {Formulation of three-dimensional field-theoretical equations for two-particle scattering reactions},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {85--95},
     year = {1991},
     volume = {88},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1991_88_1_a11/}
}
TY  - JOUR
AU  - A. I. Machavariani
TI  - Formulation of three-dimensional field-theoretical equations for two-particle scattering reactions
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1991
SP  - 85
EP  - 95
VL  - 88
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1991_88_1_a11/
LA  - ru
ID  - TMF_1991_88_1_a11
ER  - 
%0 Journal Article
%A A. I. Machavariani
%T Formulation of three-dimensional field-theoretical equations for two-particle scattering reactions
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1991
%P 85-95
%V 88
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1991_88_1_a11/
%G ru
%F TMF_1991_88_1_a11
A. I. Machavariani. Formulation of three-dimensional field-theoretical equations for two-particle scattering reactions. Teoretičeskaâ i matematičeskaâ fizika, Tome 88 (1991) no. 1, pp. 85-95. http://geodesic.mathdoc.fr/item/TMF_1991_88_1_a11/

[1] Low F., Phys. Rev., 97:5 (1955), 1392–1398 | DOI | MR | Zbl

[2] Bogolyubov N. N., Shirkov D. V., Vvedenie v teoriyu kvantovannykh polei, Nauka, M., 1984 | MR

[3] Bogolyubov N. N., Logunov A. A., Oksak A. I., Todorov I. T., Obschie printsipy kvantovoi teorii polya, Nauka, M., 1987 | MR

[4] Medvedev B. V., ZhETF, 40:3 (1961), 829–838; 47:1 (1964), 147–159

[5] Medvedev B. V., Polivanov M. K., Tr. Mezhd. zimnei shkoly teor. fiziki pri OIYaI, T. 1, OIYaI, Dubna, 1964, 77–139

[6] Goldberger M., Vatson K., Teoriya stolknovenii, Mir, M., 1964

[7] Machavariani A. I., Rusetsky A. G., Nucl. Phys., 515A (1990), 621–647 | DOI

[8] Logunov A. A., Tavkhelidze A. N., Nuovo Cim., 29 (1963), 380–399 | DOI | MR

[9] Blankenbekler R., Sugar R., Phys. Rev., 142:4 (1966), 1951–1966

[10] Kadyshevskii V. G., ZhETF, 46:2 (1964), 654–662 ; 3, 872–883 ; Nucl. Phys., B6:2 (1968), 125–148 | MR | MR | DOI

[11] Karmanov V. A., EChAYa, 19:3 (1988), 525–578

[12] Logunov A. A., Savrin V. I., Tyurin I. E., Khrustalev O. A., TMF, 6:2 (1971), 157–165

[13] Savrin V. I., Tyurin N. E., Khrustalev O. A., EChAYa, 7:1 (1976), 21–54 | MR

[14] Itsikson K., Zyuber Zh.-B., Kvantovaya teoriya polya, T. 1–2, Mir, M., 1984 | MR

[15] Cammarata J. B., Banerjee M. K., Phys. Rev., C17:3 (1978), 1125–1144

[16] Machavariani A. I., Chelidze A. D., Tr. Tbilisskogo universiteta: seriya fizika, 275 (1987), 99–114

[17] Perey F. G., Proceedings of the Conference on direct interactions and nuclear reactions mechanisms (Univ. of Padua), Gordon and Breach, New York–London, 1962, 125–138

[18] Taber de Forest, Jr., Nucl. Phys., A163:1 (1971), 237–248

[19] Efimov G. V., Ivanov M. A., Inter. J. Mod. Phys., A4:8 (1989), 2031–2060 | DOI

[20] Ivanov A. I., Nagy M., Troitskaya N. I., Volkov M. K., Phys. Lett., B235:3 (1990), 331–335 | DOI

[21] Santhaham I., Bhatnagar S., Mitra A. N., Few-Body Systems, 7:1 (1990), 141–187 | DOI