Central limit theorem for Burgers equation
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 88 (1991) no. 1, pp. 7-13
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Suppose the potential of the initial field of the Cauchy problem for the
Burgers equation is a homogeneous mean-square continuous Gaussian random
field. We show that the correlation function of this field is summable absolutely or its square is summable. Then in the limit $t\to\infty$ the field of solutions of the original equation tends in its distribution to a Gaussian random vector field.
			
            
            
            
          
        
      @article{TMF_1991_88_1_a1,
     author = {O. O. Griniv},
     title = {Central limit theorem for {Burgers} equation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {7--13},
     publisher = {mathdoc},
     volume = {88},
     number = {1},
     year = {1991},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1991_88_1_a1/}
}
                      
                      
                    O. O. Griniv. Central limit theorem for Burgers equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 88 (1991) no. 1, pp. 7-13. http://geodesic.mathdoc.fr/item/TMF_1991_88_1_a1/
