Central limit theorem for Burgers equation
Teoretičeskaâ i matematičeskaâ fizika, Tome 88 (1991) no. 1, pp. 7-13 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Suppose the potential of the initial field of the Cauchy problem for the Burgers equation is a homogeneous mean-square continuous Gaussian random field. We show that the correlation function of this field is summable absolutely or its square is summable. Then in the limit $t\to\infty$ the field of solutions of the original equation tends in its distribution to a Gaussian random vector field.
@article{TMF_1991_88_1_a1,
     author = {O. O. Griniv},
     title = {Central limit theorem for {Burgers} equation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {7--13},
     year = {1991},
     volume = {88},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1991_88_1_a1/}
}
TY  - JOUR
AU  - O. O. Griniv
TI  - Central limit theorem for Burgers equation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1991
SP  - 7
EP  - 13
VL  - 88
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1991_88_1_a1/
LA  - ru
ID  - TMF_1991_88_1_a1
ER  - 
%0 Journal Article
%A O. O. Griniv
%T Central limit theorem for Burgers equation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1991
%P 7-13
%V 88
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1991_88_1_a1/
%G ru
%F TMF_1991_88_1_a1
O. O. Griniv. Central limit theorem for Burgers equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 88 (1991) no. 1, pp. 7-13. http://geodesic.mathdoc.fr/item/TMF_1991_88_1_a1/

[1] Gurbatov S. N., Saichev A. I., ZhETF, 80:2 (1981), 689–703

[2] Uizem Dzh., Lineinye i nelineinye volny, Mir, M., 1977 | MR

[3] Billingsli P., Skhodimost veroyatnostnykh mer, Nauka, M., 1977 | MR

[4] Malyshev V. A., Minlos R. A., Gibbsovskie sluchainye polya. Metod klasternykh razlozhenii, Nauka, M., 1985 | MR

[5] Breuer P., Major P., J. of Multivariate Anal., 13 (1983), 425–441 | DOI | MR | Zbl