Isotropic model of quadrupole glass
Teoretičeskaâ i matematičeskaâ fizika, Tome 87 (1991) no. 3, pp. 473-480 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A replica-symmetric solution of a model of quadrupole glass in which the coupling constants of the axial and nonaxial interactions are distributed in accordance with a Gaussian law is considered. When the parameters of the distributions are identical, a transition to the quadrupole-glass phase is possible in the system. The temperature dependence of the order parameter of the quadrupole glass and the stability of the obtained solution are investigated.
@article{TMF_1991_87_3_a9,
     author = {E. A. Luchinskaya and E. E. Tareeva},
     title = {Isotropic model of quadrupole glass},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {473--480},
     year = {1991},
     volume = {87},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1991_87_3_a9/}
}
TY  - JOUR
AU  - E. A. Luchinskaya
AU  - E. E. Tareeva
TI  - Isotropic model of quadrupole glass
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1991
SP  - 473
EP  - 480
VL  - 87
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1991_87_3_a9/
LA  - ru
ID  - TMF_1991_87_3_a9
ER  - 
%0 Journal Article
%A E. A. Luchinskaya
%A E. E. Tareeva
%T Isotropic model of quadrupole glass
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1991
%P 473-480
%V 87
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1991_87_3_a9/
%G ru
%F TMF_1991_87_3_a9
E. A. Luchinskaya; E. E. Tareeva. Isotropic model of quadrupole glass. Teoretičeskaâ i matematičeskaâ fizika, Tome 87 (1991) no. 3, pp. 473-480. http://geodesic.mathdoc.fr/item/TMF_1991_87_3_a9/

[1] Goldbart P. M., Sherrington D., J. Phys. C, 18:9 (1985), 1923–1940 | DOI

[2] Goldbart P. M., Elderfield D., J. Phys. C, 18:9 (1985), L229–L233 | DOI

[3] Ersan A., Lage E., J. Phys. C, 16:17 (1983), L555–L560 | DOI | MR

[4] Kokshenev V. B., Litvin A. A., FNT, 13:4 (1987), 430–434

[5] Moskalenko V. A., Vladimir M. P., Kozhukar S. P., Metod samosoglasovannogo polya v teorii stekolnogo sostoyaniya spinovykh i kvadrupolnykh sistem, Shtiintsa, Kishinev, 1990 | MR

[6] Cwilich G., Kirkpatrick T. R., J. Phys. A, 22:11 (1989), 4971–4987 | DOI | MR

[7] Lutchinskaia E. A., Ryzhov V. N., Tareyeva E. E., J. Phys. C, 17:26 (1984), L665–L667 | DOI

[8] Luchinskaya E. A., Ryzhov V. N., Tareeva E. E., TMF, 67:3 (1986), 463–469 | MR

[9] Luchinskaya E. A., TMF, 67:2 (1986), 314–319 | MR

[10] Luchinskaya E. A., Tareeva E. E., TMF, 70:3 (1987), 477–480

[11] Sherrington D., Kirkpatrick S., Phys. Rev. Lett., 35:26 (1975), 1792–1796 | DOI

[12] Carmesin H. O., J. Phys. A, 22:3 (1989), 297–309 | DOI | MR

[13] Vollmayr H., Kree R., Zippelius A., Europhys. Lett., 12:3 (1990), 235–240 | DOI

[14] de Almeida R., Thouless D., J. Phys. A, 11:5 (1978), 983–990 | DOI

[15] Parisi G., J. Phys. A, 13:3 (1980), 1101–1112 | DOI | MR