Thermodynamic functions of three-dimensional ising model near the phase transition point with allowance for corrections to scaling. II. The case $T$
Teoretičeskaâ i matematičeskaâ fizika, Tome 87 (1991) no. 3, pp. 434-455 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Explicit expressions are obtained for the thermodynamic functions of the three-dimensional Ising model with allowance for confluent corrections at temperatures below the critical value. It is shown that the critical amplitudes of these corrections can be represented in the form of a universal part and a nonuniversal factor, which depends on the microscopic parameters of the Hamiltonian. The obtained results are compared with the case $T>T_c$. Expressions are found for some combinations of the critical amplitudes. The contribution made by the corrections to scaling to the specific heat of the system is estimated.
@article{TMF_1991_87_3_a7,
     author = {M. P. Kozlovskii and I. V. Pylyuk and I. R. Yukhnovskii},
     title = {Thermodynamic functions of three-dimensional ising model near the phase transition point with allowance for corrections to scaling. {II.~The~case} $T<T_c$},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {434--455},
     year = {1991},
     volume = {87},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1991_87_3_a7/}
}
TY  - JOUR
AU  - M. P. Kozlovskii
AU  - I. V. Pylyuk
AU  - I. R. Yukhnovskii
TI  - Thermodynamic functions of three-dimensional ising model near the phase transition point with allowance for corrections to scaling. II. The case $T
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1991
SP  - 434
EP  - 455
VL  - 87
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1991_87_3_a7/
LA  - ru
ID  - TMF_1991_87_3_a7
ER  - 
%0 Journal Article
%A M. P. Kozlovskii
%A I. V. Pylyuk
%A I. R. Yukhnovskii
%T Thermodynamic functions of three-dimensional ising model near the phase transition point with allowance for corrections to scaling. II. The case $T
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1991
%P 434-455
%V 87
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1991_87_3_a7/
%G ru
%F TMF_1991_87_3_a7
M. P. Kozlovskii; I. V. Pylyuk; I. R. Yukhnovskii. Thermodynamic functions of three-dimensional ising model near the phase transition point with allowance for corrections to scaling. II. The case $T
                      
                    

[1] Yukhnovsky I. R., Phase Transitions of the Second Order. The Collective Variables Method, World Scientific, Singapore, 1987 | MR

[2] Yukhnovs'ky I. R., Rivista del Nuovo Cimento, 12:1 (1989), 1–120 | DOI

[3] Yukhnovsky I. R., Solution of the three-dimensional Ising model in the temperature region below critical point, Preprint ITP-83-85E, ITP Acad. Sci. Ukr. SSR, Kiev, 1983

[4] Yukhnovsky I. R., On general theory of second-order phase transitions, Preprint ITP-83-6E, ITP Acad. Sci. Ukr. SSR, Kiev, 1983 | MR

[5] Yukhnovskii I. R., TMF, 36:3 (1978), 373–399

[6] Kozlovsky M. P., Pylyuk I. V., Free energy and other thermodynamical functions above the second-order phase transition point, Preprint ITP-85-23E, ITP Acad. Sci. Ukr. SSR, Kiev, 1985

[7] Kozlovskii M. P., Ilnitskii Ya. N., Pylyuk I. V., Svobodnaya energiya i drugie termodinamicheskie funktsii trekhmernoi modeli Izinga nizhe tochki fazovogo perekhoda, Preprint ITF-85-107R, ITF AN USSR, Kiev, 1985

[8] Kozlovskii M. P., Pylyuk I. V., Raschet popravok k skeilingu v vyrazheniyakh dlya termodinamicheskikh funktsii modeli Izinga, Preprint ITF-89-24R, ITF AN USSR, Kiev, 1989

[9] Kozlovskii M. P., Pylyuk I. V., Sravnenie vyrazhenii dlya termodinamicheskikh funktsii modeli Izinga pri temperaturakh vyshe i nizhe kriticheskoi v trekhmernom prostranstve, Preprint ITF-89-42R, ITF AN USSR, Kiev, 1989

[10] Wegner F. J., Phase Transition and Critical Phenomena, 6, eds. Domb. C., Green M. S., Academic, New York, 1976, 7–124 | MR

[11] Bagnuls C., Bervillier C., Phys. Rev., B24:3 (1981), 1226–1235 | DOI

[12] Jensen S. J. K., Mouritsen O. G., J. Phys. A, 15:8 (1982), 2631–2636 | DOI | MR

[13] Yukhnovskii I. R., Kozlovskii M. P., Kolomiets V. A., UFZh, 27:9 (1982), 1399–1403 | MR

[14] Kozlovskii M. P., Oblast primenimosti renormgruppovykh sootnoshenii pri opisanii fazovogo perekhoda vtorogo roda. Tr. soveschaniya “Renormgruppa-86”, D2-87-123, OIYaI, Dubna, 1987, S. 300–314 | MR

[15] Kozlovskii M. P., Priblizhennye rekurrentnye sootnosheniya trekhmernoi modeli Izinga v metode kollektivnykh peremennykh, Preprint ITF-81-82R, ITF AN USSR, Kiev, 1981

[16] Pylyuk I. V., Termodinamicheskie funktsii trekhmernogo izingovskogo ferromagnetika v okrestnosti tochki fazovogo perekhoda s uchetom pervoi i vtoroi konfluentnykh popravok, Preprint ITF-90-12R, ITF AN USSR, Kiev, 1990

[17] Kozlovskii M. P., Ilnitskii Ya. N., Neuniversalnye termodinamicheskie kharakteristiki modeli Izinga pri razmernosti prostranstva, blizkoi k chetyrem v metode kollektivnykh peremennykh, Preprint ITF-88-69R, ITF AN USSR, Kiev, 1988

[18] Sykes M. F., Gaunt D. S., Roberts P. D., Wyles J. A., J. Phys. A, 5:5 (1972)

[19] Jensen S. J. K., J. Phys. A, 17:5 (1984), 1149–1155 | DOI

[20] Barmatz M., Hohenberg P. C., Kornblit A., Phys. Rev., B12:5 (1975), 1947–1968 | DOI

[21] Singsaas A., Ahlers G., Phys. Rev., B30:9 (1984), 5103–5115 | DOI

[22] Bagnuls C., Bervillier C., Boccara E., Phys. Lett., 103A:9 (1984), 411–415 | DOI

[23] Bervillier C., Phys. Rev., B14:11 (1976), 4964–4975 | DOI | MR

[24] Bervillier C., Phys. Rev., B34:11 (1986), 8141–8143 | DOI | MR

[25] Bagnuls C., Bervillier C., Meiron D. I., Nickel B. G., Phys. Rev., B35:7 (1987), 3585–3607 | DOI

[26] Mau-Chung Chang, Houghton A., Phys. Rev., B21:5 (1980), 1881–1892 | DOI | MR

[27] Källbäck O., Humble S. G., Malmström G., Phys. Rev., B24:9 (1981)