The problem of dynamical stability of spontaneous compactification in Kaluza–Klein models with vacuum corrections
Teoretičeskaâ i matematičeskaâ fizika, Tome 87 (1991) no. 3, pp. 404-413 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A semiclassical model of a nonminimally coupled scalar field in a multidimensional space with spherically compactified additional dimensions is considered. It is noted that for the self-consistent description of time-dependent perturbations of the radius of the internal space one needs at least a complete adiabatic expansion of the vacuum energy-momentum tensor, including all higher derivatives of the metric. The proposed technique makes it possible to obtain such expansions linearized around an arbitrary (quasi)static solution. It is found that the frequency Fourier components of the energy-momentum tensor converge absolutely only in a finite disk of complex frequencies, and unique analytic continuation to the remainder of the complex plane is impossible. This means that rapid oscillations are nonlocal and can be investigated only nonperturbatively. Nevertheless, within the disk of absolute convergence there exist in general eigenfrequencies, and if these include complex frequencies, then local perturbation theory gives a proof of instability. As an illustration, the energy-momentum tensor for a six-dimensional spacetime is calculated.
@article{TMF_1991_87_3_a3,
     author = {V. M. Dragilev},
     title = {The~problem of dynamical stability of spontaneous compactification in {Kaluza{\textendash}Klein} models with vacuum corrections},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {404--413},
     year = {1991},
     volume = {87},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1991_87_3_a3/}
}
TY  - JOUR
AU  - V. M. Dragilev
TI  - The problem of dynamical stability of spontaneous compactification in Kaluza–Klein models with vacuum corrections
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1991
SP  - 404
EP  - 413
VL  - 87
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1991_87_3_a3/
LA  - ru
ID  - TMF_1991_87_3_a3
ER  - 
%0 Journal Article
%A V. M. Dragilev
%T The problem of dynamical stability of spontaneous compactification in Kaluza–Klein models with vacuum corrections
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1991
%P 404-413
%V 87
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1991_87_3_a3/
%G ru
%F TMF_1991_87_3_a3
V. M. Dragilev. The problem of dynamical stability of spontaneous compactification in Kaluza–Klein models with vacuum corrections. Teoretičeskaâ i matematičeskaâ fizika, Tome 87 (1991) no. 3, pp. 404-413. http://geodesic.mathdoc.fr/item/TMF_1991_87_3_a3/

[1] Toms D. J., Can. J. Phys., 64:5 (1986), 644–652 | DOI

[2] Bagrov V. G., Bukhbinder I. L., Odintsov S. D., Problemy teorii gravitatsii, relyativistskoi kinetiki i evolyutsii Vselennoi, KGPI, Kazan, 1988, 161–169

[3] Buchbinder I. L., Odintsow S. D., Fortschr. Phys., 37:4 (1989), 225–259 | DOI | MR

[4] Copeland E. J., Toms D. J., Phys. Rev., D32:8 (1985), 1921–1927 | MR

[5] Gilbert G., Mc Clain B., Rubin M. A., Phys. Lett., B142:1–2 (1984), 28–34 | DOI | MR

[6] Gilbert G., Mc Clain B., Nucl. Phys., B244:1 (1984), 173–185 | DOI

[7] Gusynin V. P., Roman'kov V. V., Problemy fiziki vysokikh energii i teorii polya, Tr. 11 semin. (Protvino, 5–9 iyulya 1988), Nauka, M., 1989, 35–43

[8] Dragilev V. M., TMF, 85:3 (1990), 388–396 | MR

[9] Maeda K., Phys. Lett., B186:1 (1987), 33–37 | DOI

[10] Lim C. S., Phys. Rev., D31:10 (1985), 2507–2513

[11] Shen T. C., Sobzsyk J., Phys. Rev., D36:2 (1987), 397–411

[12] Vasilevich D. V., Shtykov N. N., YaF, 50:2 (1989), 556–561

[13] Appelquist T., Chodos A., Myers E., Phys. Lett., B127:1–2 (1983), 51–54 | DOI

[14] Kikkawa K., Kubota T. et al., Nucl. Phys., B260:2 (1985), 429–455 | DOI | MR

[15] Gleiser M., Jetzer P., Rubin M. A., Phys. Rev., D36:8 (1987), 2429–2439 | MR

[16] Dragilev V. M., TMF, 84:2 (1990), 304–313 | MR

[17] Dergalev V. P., Odintsov S. D., Gravitatsiya i fundamentalnye vzaimodeistviya, MGPI, M., 1988, 113

[18] Vereshkov G. M., Grishkan Yu. S. i dr., ZhETF, 73:6 (1977), 1985–2007 | MR

[19] Beilin V. A., Vereshkov G. M. i dr., ZhETF, 78:6 (1980), 2081–2098 | MR

[20] Vereshkov G. M., Korotun A. V., Poltavtsev A. N., Izv. vuzov. Fiz., 32:10 (1989), 61–68

[21] Prudnikov A. P., Brychkov Yu. A., Marichev O. I., Integraly i ryady. Elementarnye funktsii, Nauka, M., 1981 | MR | Zbl

[22] Koikawa T., Yoshimura M., Phys. Lett., B150:1–3 (1985), 107–112 | DOI | MR