Splitting of the lowest energy levels of the Schr\"odinger equation and asymptotic behavior of the fundamental solution of the equation $hu_t=h^2\Delta u/2-V(x)u$
Teoretičeskaâ i matematičeskaâ fizika, Tome 87 (1991) no. 3, pp. 323-375
Voir la notice de l'article provenant de la source Math-Net.Ru
For the equation $h\partial u/\partial t=h^2\Delta u/2-V(x)u$ with positive potential $V(x)$, global exponential asymptotic behavior of the fundamental solution is obtained by the method of the tunnel canonical operator. In the case
of a potential with degenerate points of global minimum, the behavior of the solutions to the Cauchy problem is investigated at times of order $t=h^{-(1+\varkappa)}$, $\varkappa>0$. The developed theory is used to obtain
exponential asymptotics of the lowest eigenfunctions of the Schrödinger
operator $-h^2\Delta/2-V(x)$ and to estimate the tunnel effect.
@article{TMF_1991_87_3_a0,
author = {S. Yu. Dobrokhotov and V. N. Kolokoltsov and V. P. Maslov},
title = {Splitting of the lowest energy levels of the {Schr\"odinger} equation and asymptotic behavior of the fundamental solution of the equation $hu_t=h^2\Delta u/2-V(x)u$},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {323--375},
publisher = {mathdoc},
volume = {87},
number = {3},
year = {1991},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1991_87_3_a0/}
}
TY - JOUR AU - S. Yu. Dobrokhotov AU - V. N. Kolokoltsov AU - V. P. Maslov TI - Splitting of the lowest energy levels of the Schr\"odinger equation and asymptotic behavior of the fundamental solution of the equation $hu_t=h^2\Delta u/2-V(x)u$ JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1991 SP - 323 EP - 375 VL - 87 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1991_87_3_a0/ LA - ru ID - TMF_1991_87_3_a0 ER -
%0 Journal Article %A S. Yu. Dobrokhotov %A V. N. Kolokoltsov %A V. P. Maslov %T Splitting of the lowest energy levels of the Schr\"odinger equation and asymptotic behavior of the fundamental solution of the equation $hu_t=h^2\Delta u/2-V(x)u$ %J Teoretičeskaâ i matematičeskaâ fizika %D 1991 %P 323-375 %V 87 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/TMF_1991_87_3_a0/ %G ru %F TMF_1991_87_3_a0
S. Yu. Dobrokhotov; V. N. Kolokoltsov; V. P. Maslov. Splitting of the lowest energy levels of the Schr\"odinger equation and asymptotic behavior of the fundamental solution of the equation $hu_t=h^2\Delta u/2-V(x)u$. Teoretičeskaâ i matematičeskaâ fizika, Tome 87 (1991) no. 3, pp. 323-375. http://geodesic.mathdoc.fr/item/TMF_1991_87_3_a0/