Solution of time-dependent Schr\"odinger equation in a~nontraditional Hilbert space
Teoretičeskaâ i matematičeskaâ fizika, Tome 87 (1991) no. 1, pp. 86-96

Voir la notice de l'article provenant de la source Math-Net.Ru

A Hilbert space that is not traditional for quantum mechanics is used. It is the space of square-integrable functions of not only the space and spin variables $\mathbf r$ but also the time $t$ on an interval $(-T/2, T/2)$. In this space, the time-dependent Schrödinger equation formally reduces to a time-independent equation, which can be solved by the methods of time-independent scattering theory. A solution is found for cases in which a time-dependent perturbation contains several harmonics; this perturbation is small, and the duration of the perturbation is appreciably shorter than the lifetime of the excited levels.
@article{TMF_1991_87_1_a8,
     author = {A. Ya. Dzyublik},
     title = {Solution of time-dependent {Schr\"odinger} equation in a~nontraditional {Hilbert} space},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {86--96},
     publisher = {mathdoc},
     volume = {87},
     number = {1},
     year = {1991},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1991_87_1_a8/}
}
TY  - JOUR
AU  - A. Ya. Dzyublik
TI  - Solution of time-dependent Schr\"odinger equation in a~nontraditional Hilbert space
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1991
SP  - 86
EP  - 96
VL  - 87
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1991_87_1_a8/
LA  - ru
ID  - TMF_1991_87_1_a8
ER  - 
%0 Journal Article
%A A. Ya. Dzyublik
%T Solution of time-dependent Schr\"odinger equation in a~nontraditional Hilbert space
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1991
%P 86-96
%V 87
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1991_87_1_a8/
%G ru
%F TMF_1991_87_1_a8
A. Ya. Dzyublik. Solution of time-dependent Schr\"odinger equation in a~nontraditional Hilbert space. Teoretičeskaâ i matematičeskaâ fizika, Tome 87 (1991) no. 1, pp. 86-96. http://geodesic.mathdoc.fr/item/TMF_1991_87_1_a8/