Minimal tori in the five-dimensional sphere in $\mathbb C^3$
Teoretičeskaâ i matematičeskaâ fizika, Tome 87 (1991) no. 1, pp. 48-56

Voir la notice de l'article provenant de la source Math-Net.Ru

The class of surfaces that have a certain property (called complexnormal) in the five-dimensional sphere in $\mathbb C^3$ is considered. It is shown that the minimal tori in this class are described by the equation $u_{z\overline{z}}=e^{-2u}-e^u$, which can be integrated by the inverse scattering method. The construction of finite-gap minimal tori that are complexnormal in the five-dimensional sphere in $\mathbb C^3$ is described.
@article{TMF_1991_87_1_a4,
     author = {R. A. Sharipov},
     title = {Minimal tori in the five-dimensional sphere in $\mathbb C^3$},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {48--56},
     publisher = {mathdoc},
     volume = {87},
     number = {1},
     year = {1991},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1991_87_1_a4/}
}
TY  - JOUR
AU  - R. A. Sharipov
TI  - Minimal tori in the five-dimensional sphere in $\mathbb C^3$
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1991
SP  - 48
EP  - 56
VL  - 87
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1991_87_1_a4/
LA  - ru
ID  - TMF_1991_87_1_a4
ER  - 
%0 Journal Article
%A R. A. Sharipov
%T Minimal tori in the five-dimensional sphere in $\mathbb C^3$
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1991
%P 48-56
%V 87
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1991_87_1_a4/
%G ru
%F TMF_1991_87_1_a4
R. A. Sharipov. Minimal tori in the five-dimensional sphere in $\mathbb C^3$. Teoretičeskaâ i matematičeskaâ fizika, Tome 87 (1991) no. 1, pp. 48-56. http://geodesic.mathdoc.fr/item/TMF_1991_87_1_a4/