Minimal tori in the five-dimensional sphere in $\mathbb C^3$
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 87 (1991) no. 1, pp. 48-56
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The class of surfaces that have a certain property (called complexnormal) in the five-dimensional sphere in $\mathbb C^3$ is considered. It is shown that the minimal tori in this class are described by the equation $u_{z\overline{z}}=e^{-2u}-e^u$, which can be integrated by the inverse scattering method. The construction of finite-gap minimal tori that are complexnormal in the five-dimensional sphere in $\mathbb C^3$ is described.
			
            
            
            
          
        
      @article{TMF_1991_87_1_a4,
     author = {R. A. Sharipov},
     title = {Minimal tori in the five-dimensional sphere in $\mathbb C^3$},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {48--56},
     publisher = {mathdoc},
     volume = {87},
     number = {1},
     year = {1991},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1991_87_1_a4/}
}
                      
                      
                    R. A. Sharipov. Minimal tori in the five-dimensional sphere in $\mathbb C^3$. Teoretičeskaâ i matematičeskaâ fizika, Tome 87 (1991) no. 1, pp. 48-56. http://geodesic.mathdoc.fr/item/TMF_1991_87_1_a4/
