Minimal tori in the five-dimensional sphere in $\mathbb C^3$
Teoretičeskaâ i matematičeskaâ fizika, Tome 87 (1991) no. 1, pp. 48-56
Cet article a éte moissonné depuis la source Math-Net.Ru
The class of surfaces that have a certain property (called complexnormal) in the five-dimensional sphere in $\mathbb C^3$ is considered. It is shown that the minimal tori in this class are described by the equation $u_{z\overline{z}}=e^{-2u}-e^u$, which can be integrated by the inverse scattering method. The construction of finite-gap minimal tori that are complexnormal in the five-dimensional sphere in $\mathbb C^3$ is described.
@article{TMF_1991_87_1_a4,
author = {R. A. Sharipov},
title = {Minimal tori in the five-dimensional sphere in $\mathbb C^3$},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {48--56},
year = {1991},
volume = {87},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1991_87_1_a4/}
}
R. A. Sharipov. Minimal tori in the five-dimensional sphere in $\mathbb C^3$. Teoretičeskaâ i matematičeskaâ fizika, Tome 87 (1991) no. 1, pp. 48-56. http://geodesic.mathdoc.fr/item/TMF_1991_87_1_a4/