Canonical quantization of $D$-dimensional $R^2$~gravity
Teoretičeskaâ i matematičeskaâ fizika, Tome 87 (1991) no. 1, pp. 141-153
Voir la notice de l'article provenant de la source Math-Net.Ru
The canonical formalism of $R^2$ gravity in spacetime of arbitrary dimension $D>4$ is constructed. It is shown that there exist five qualitatively different forms of this theory, in each of which the constraints in the phase space are found. Canonical quantization in a unitary gauge is performed, and the generating functional of the Green's functions is represented as a functional integral over the original fields with local measure. It is shown that in four forms of the theory the local measure has a nonstandard form; moreover, the structure of the local measure in one of these forms has not hitherto been encountered in quantum field theory models.
@article{TMF_1991_87_1_a13,
author = {I. L. Buchbinder and I. Yu. Karataeva and S. L. Lyakhovich},
title = {Canonical quantization of $D$-dimensional $R^2$~gravity},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {141--153},
publisher = {mathdoc},
volume = {87},
number = {1},
year = {1991},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1991_87_1_a13/}
}
TY - JOUR AU - I. L. Buchbinder AU - I. Yu. Karataeva AU - S. L. Lyakhovich TI - Canonical quantization of $D$-dimensional $R^2$~gravity JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1991 SP - 141 EP - 153 VL - 87 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1991_87_1_a13/ LA - ru ID - TMF_1991_87_1_a13 ER -
%0 Journal Article %A I. L. Buchbinder %A I. Yu. Karataeva %A S. L. Lyakhovich %T Canonical quantization of $D$-dimensional $R^2$~gravity %J Teoretičeskaâ i matematičeskaâ fizika %D 1991 %P 141-153 %V 87 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/TMF_1991_87_1_a13/ %G ru %F TMF_1991_87_1_a13
I. L. Buchbinder; I. Yu. Karataeva; S. L. Lyakhovich. Canonical quantization of $D$-dimensional $R^2$~gravity. Teoretičeskaâ i matematičeskaâ fizika, Tome 87 (1991) no. 1, pp. 141-153. http://geodesic.mathdoc.fr/item/TMF_1991_87_1_a13/