Strong centrally symmetric vacuum field in the relativistic theory of gravitation
Teoretičeskaâ i matematičeskaâ fizika, Tome 87 (1991) no. 1, pp. 130-140 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An exact static solution of the equations of the relativistic theory of gravitation in vacuum for the case of spherical symmetry that generalizes Fock's harmonic interval is considered. The condition that the field be physical is used to find the region of applicability of this solution. The radial motion of test particles in the generalized harmonic metric is considered. It is shown that the picture of the motion of the particles for a distant observer differs fundamentally from the one usually adopted (in Fock's metric) and does not correspond to the picture of asymptotic slowing down of the collapsing body. The energy density of the gravitational field in this case is calculated.
@article{TMF_1991_87_1_a12,
     author = {A. V. Genk},
     title = {Strong centrally symmetric vacuum field in the relativistic theory of gravitation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {130--140},
     year = {1991},
     volume = {87},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1991_87_1_a12/}
}
TY  - JOUR
AU  - A. V. Genk
TI  - Strong centrally symmetric vacuum field in the relativistic theory of gravitation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1991
SP  - 130
EP  - 140
VL  - 87
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1991_87_1_a12/
LA  - ru
ID  - TMF_1991_87_1_a12
ER  - 
%0 Journal Article
%A A. V. Genk
%T Strong centrally symmetric vacuum field in the relativistic theory of gravitation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1991
%P 130-140
%V 87
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1991_87_1_a12/
%G ru
%F TMF_1991_87_1_a12
A. V. Genk. Strong centrally symmetric vacuum field in the relativistic theory of gravitation. Teoretičeskaâ i matematičeskaâ fizika, Tome 87 (1991) no. 1, pp. 130-140. http://geodesic.mathdoc.fr/item/TMF_1991_87_1_a12/