Kinetic equations for dense gases and liquids
Teoretičeskaâ i matematičeskaâ fizika, Tome 87 (1991) no. 1, pp. 113-129

Voir la notice de l'article provenant de la source Math-Net.Ru

The kinetic equation of the revised Enskog theory for the system of hard spheres is derived in the framework of the nonequilibrium statistical operator method from the Liouville equation with a modified boundary condition that takes into account the correlations associated with the local conservation laws. It is shown that the kinetic equation corresponds to the approximation of “pair collisions” without retardation in time. A generalized Enskog–Landau kinetic equation for a singlecomponent system of charged hard spheres is derived. Its normal solutions and analytic expressions for the transport coefficients are obtained.
@article{TMF_1991_87_1_a11,
     author = {D. N. Zubarev and V. G. Morozov and I. P. Omelyan and M. V. Tokarchuk},
     title = {Kinetic equations for dense gases and liquids},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {113--129},
     publisher = {mathdoc},
     volume = {87},
     number = {1},
     year = {1991},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1991_87_1_a11/}
}
TY  - JOUR
AU  - D. N. Zubarev
AU  - V. G. Morozov
AU  - I. P. Omelyan
AU  - M. V. Tokarchuk
TI  - Kinetic equations for dense gases and liquids
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1991
SP  - 113
EP  - 129
VL  - 87
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1991_87_1_a11/
LA  - ru
ID  - TMF_1991_87_1_a11
ER  - 
%0 Journal Article
%A D. N. Zubarev
%A V. G. Morozov
%A I. P. Omelyan
%A M. V. Tokarchuk
%T Kinetic equations for dense gases and liquids
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1991
%P 113-129
%V 87
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1991_87_1_a11/
%G ru
%F TMF_1991_87_1_a11
D. N. Zubarev; V. G. Morozov; I. P. Omelyan; M. V. Tokarchuk. Kinetic equations for dense gases and liquids. Teoretičeskaâ i matematičeskaâ fizika, Tome 87 (1991) no. 1, pp. 113-129. http://geodesic.mathdoc.fr/item/TMF_1991_87_1_a11/