Generalized twistors and geometric quantization
Teoretičeskaâ i matematičeskaâ fizika, Tome 87 (1991) no. 1, pp. 3-21

Voir la notice de l'article provenant de la source Math-Net.Ru

The curved phase space $M$ of an arbitrary generalized Hamiltonian system that possesses invariance with respect to a Lie group $G$ is considered. The geometric and BRST quantizations of these phase spaces are considered. For $M$ the space of universal ghosts (specters) $S$ is introduced; it contains the space of ghosts $D$ for any admissible Lie group $G$ of constraints. The phase manifold $M$ is embedded in the manifold of generalized twistors $Z$. A quantization scheme that generalizes the approaches of the geometric and BRST quantizations is described. In this scheme, the quantum theory is formulated in terms of the generalized twistor manifold and bundles over it.
@article{TMF_1991_87_1_a0,
     author = {A. D. Popov},
     title = {Generalized twistors and geometric quantization},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {3--21},
     publisher = {mathdoc},
     volume = {87},
     number = {1},
     year = {1991},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1991_87_1_a0/}
}
TY  - JOUR
AU  - A. D. Popov
TI  - Generalized twistors and geometric quantization
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1991
SP  - 3
EP  - 21
VL  - 87
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1991_87_1_a0/
LA  - ru
ID  - TMF_1991_87_1_a0
ER  - 
%0 Journal Article
%A A. D. Popov
%T Generalized twistors and geometric quantization
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1991
%P 3-21
%V 87
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1991_87_1_a0/
%G ru
%F TMF_1991_87_1_a0
A. D. Popov. Generalized twistors and geometric quantization. Teoretičeskaâ i matematičeskaâ fizika, Tome 87 (1991) no. 1, pp. 3-21. http://geodesic.mathdoc.fr/item/TMF_1991_87_1_a0/