Analytic solution of slip problems for a binary gas
Teoretičeskaâ i matematičeskaâ fizika, Tome 86 (1991) no. 3, pp. 402-419 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Exact solutions are obtained for the first time for the system of $\tau$-model Boltzmann equations for a binary gas in problems of slip, namely, the isothermal, thermal, diffusion, Burnett thermal, and Burnett diffusion solutions. Cases of complete and partial accommodation of the tangential momentum of the molecules are considered. The model Boltzmann equations are reduced to a Wiener–Hopf equation of the first kind with two kernels (one kernel has a direct shift, the other an inverse shift). This equation is reduced by an inverse Laplace transformation to a Carleman boundary-value problem with inverse shift, the solution of which is given by Neumann series. In the case of complete accommodation, the solution can be given in closed form.
@article{TMF_1991_86_3_a9,
     author = {A. V. Latyshev},
     title = {Analytic solution of slip problems for a~binary gas},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {402--419},
     year = {1991},
     volume = {86},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1991_86_3_a9/}
}
TY  - JOUR
AU  - A. V. Latyshev
TI  - Analytic solution of slip problems for a binary gas
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1991
SP  - 402
EP  - 419
VL  - 86
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1991_86_3_a9/
LA  - ru
ID  - TMF_1991_86_3_a9
ER  - 
%0 Journal Article
%A A. V. Latyshev
%T Analytic solution of slip problems for a binary gas
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1991
%P 402-419
%V 86
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1991_86_3_a9/
%G ru
%F TMF_1991_86_3_a9
A. V. Latyshev. Analytic solution of slip problems for a binary gas. Teoretičeskaâ i matematičeskaâ fizika, Tome 86 (1991) no. 3, pp. 402-419. http://geodesic.mathdoc.fr/item/TMF_1991_86_3_a9/

[1] Kogan M. N., Dinamika razrezhennogo gaza. Kineticheskaya teoriya, Nauka, M., 1967

[2] Sone Y., “An asimptotic theory of flow of rarefield gas over a smooth boundary, I”, Rarefield Gas Dynamics, V. 1, eds. Trilling L., Wachmann H. Y., 1969, 243–253 | MR

[3] Sone Y., Phys. Fluids, 15:8 (1972), 1418–1423 | DOI | MR

[4] Mayasov E. G., Yushkanov A. A., Yalamov Yu. I., Pisma v ZhETF, 14:6 (1988), 498–502

[5] Cercignani C., Ann. Phys., 20:1 (1962), 219–233 | DOI | MR | Zbl

[6] Pao Y.-P., Phys. Fluids, 14:1 (1971), 2285–2290 | DOI | MR | Zbl

[7] Latyshev A. V., TMF, 85:3 (1990), 428–442 | MR | Zbl

[8] Latyshev A. V., PMM, 1990, no. 4, 581–586 | MR | Zbl

[9] Latyshev A. V., Yushkanov A. A., Matem. modelirovanie, 2:6 (1990), 55–63 | MR | Zbl

[10] Frisch H., Trans. Theory and Stat. Phys., 11:2 (1988), 615–633 | DOI | MR

[11] Land H., Loyalka S. K., Phys. Fluids, 13:8 (1970), 1871–1873

[12] Latyshev A. V., Reshenie integrodifferentsialnykh uravnenii v granichnykh zadachakh diffuzionnogo skolzheniya binarnykh gazov, Deponirovano v VINITI, No 5008, VINITI, M., 1986

[13] Yalamov Yu. I., Yushkanov A. A., Savkov S. A., DAN SSSR, 301:3 (1988), 1111–1114

[14] Zhdanov V. M., Smirnova R. V., Zhurnal prikl. matem. i tekhn. fiziki, 1978, no. 5, 103–115

[15] Frisch H., Frisch U., J. Quant. Spectrosc. Radiat. Transfer., 28:5 (1982), 361–375 | DOI

[16] Latyshev A. V., Tochnye resheniya i prilozheniya kineticheskikh modelnykh uravnenii Boltsmana, Deponirovano v VINITI, No 7208, 1–94, VINITI, M., 1988

[17] Loyalka S. K., Cippola J. W., Phys. Fluids, 14:8 (1971), 1656–1661 | DOI