Cauchy problem for waves on shallow water
Teoretičeskaâ i matematičeskaâ fizika, Tome 86 (1991) no. 3, pp. 474-478 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A classical one-dimensional model of shallow water in the class of continuously differentiable functions is considered. A criterion is obtained for the existence of a solution to the Cauchy problem that is global in time. For the special class of step-type initial data, the asymptotic behavior of the solution as $t\to+\infty$ is calculated.
@article{TMF_1991_86_3_a15,
     author = {R. F. Bikbaev},
     title = {Cauchy problem for waves on shallow water},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {474--478},
     year = {1991},
     volume = {86},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1991_86_3_a15/}
}
TY  - JOUR
AU  - R. F. Bikbaev
TI  - Cauchy problem for waves on shallow water
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1991
SP  - 474
EP  - 478
VL  - 86
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1991_86_3_a15/
LA  - ru
ID  - TMF_1991_86_3_a15
ER  - 
%0 Journal Article
%A R. F. Bikbaev
%T Cauchy problem for waves on shallow water
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1991
%P 474-478
%V 86
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1991_86_3_a15/
%G ru
%F TMF_1991_86_3_a15
R. F. Bikbaev. Cauchy problem for waves on shallow water. Teoretičeskaâ i matematičeskaâ fizika, Tome 86 (1991) no. 3, pp. 474-478. http://geodesic.mathdoc.fr/item/TMF_1991_86_3_a15/

[1] Stoker Dzh., Volny na vode, IL, M., 1959

[2] Uizem Dzh., Lineinye i nelineinye volny, Mir, M., 1977 | MR

[3] Rozhdestvenskii B. L., Yanenko N. N., Sistemy kvazilineinykh uravnenii, Nauka, M., 1978 | MR

[4] Bikbaev R. F., Zap. nauchn. semin. LOMI, 180, 1989, 10–23

[5] Gurevich A. V., Pitaevskii L. P., ZhETF, 65 (1973), 590–604

[6] Bikbaev R. F., Funkts. analiz i ego prilozh., 23:4 (1989), 1–10 | MR | Zbl