Cauchy problem for waves on shallow water
Teoretičeskaâ i matematičeskaâ fizika, Tome 86 (1991) no. 3, pp. 474-478
Cet article a éte moissonné depuis la source Math-Net.Ru
A classical one-dimensional model of shallow water in the class of continuously differentiable functions is considered. A criterion is obtained for the existence of a solution to the Cauchy problem that is global in time. For the special class of step-type initial data, the asymptotic behavior of the solution as $t\to+\infty$ is calculated.
@article{TMF_1991_86_3_a15,
author = {R. F. Bikbaev},
title = {Cauchy problem for waves on shallow water},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {474--478},
year = {1991},
volume = {86},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1991_86_3_a15/}
}
R. F. Bikbaev. Cauchy problem for waves on shallow water. Teoretičeskaâ i matematičeskaâ fizika, Tome 86 (1991) no. 3, pp. 474-478. http://geodesic.mathdoc.fr/item/TMF_1991_86_3_a15/
[1] Stoker Dzh., Volny na vode, IL, M., 1959
[2] Uizem Dzh., Lineinye i nelineinye volny, Mir, M., 1977 | MR
[3] Rozhdestvenskii B. L., Yanenko N. N., Sistemy kvazilineinykh uravnenii, Nauka, M., 1978 | MR
[4] Bikbaev R. F., Zap. nauchn. semin. LOMI, 180, 1989, 10–23
[5] Gurevich A. V., Pitaevskii L. P., ZhETF, 65 (1973), 590–604
[6] Bikbaev R. F., Funkts. analiz i ego prilozh., 23:4 (1989), 1–10 | MR | Zbl