The $n\to\infty$ limit of the $n$-vector model with large defects
Teoretičeskaâ i matematičeskaâ fizika, Tome 86 (1991) no. 3, pp. 448-459 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The correlation functions of the three-dimensional $n$-vector model are investigated in the limit $n\to\infty$ near a large defect with dimension $d'$. It is shown that at the critical point the correlation function behaves nonuniversally when $d'=1$ and that scaling is violated when $d'=2$. The local magnetization behaves similarly. The calculations have been made to the second order in the parameter $\lambda$, which characterizes the strength of the defect.
@article{TMF_1991_86_3_a13,
     author = {R. Z. Bariev and I. Z. Ilaldinov},
     title = {The~$n\to\infty$ limit of the $n$-vector model with large defects},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {448--459},
     year = {1991},
     volume = {86},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1991_86_3_a13/}
}
TY  - JOUR
AU  - R. Z. Bariev
AU  - I. Z. Ilaldinov
TI  - The $n\to\infty$ limit of the $n$-vector model with large defects
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1991
SP  - 448
EP  - 459
VL  - 86
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1991_86_3_a13/
LA  - ru
ID  - TMF_1991_86_3_a13
ER  - 
%0 Journal Article
%A R. Z. Bariev
%A I. Z. Ilaldinov
%T The $n\to\infty$ limit of the $n$-vector model with large defects
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1991
%P 448-459
%V 86
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1991_86_3_a13/
%G ru
%F TMF_1991_86_3_a13
R. Z. Bariev; I. Z. Ilaldinov. The $n\to\infty$ limit of the $n$-vector model with large defects. Teoretičeskaâ i matematičeskaâ fizika, Tome 86 (1991) no. 3, pp. 448-459. http://geodesic.mathdoc.fr/item/TMF_1991_86_3_a13/

[1] Nagaev E. L., Magnetiki so slozhnymi obmennymi vzaimodeistviyami, Nauka, M., 1988

[2] Bray A. J., Moore M. A., J. Phys. A: Math. Gen., 10 (1977), 1927 | DOI | MR

[3] Abe R., Progr. Theor. Phys., 65 (1981), 1237 | DOI

[4] Abe R., Progr. Theor. Phys., 65 (1981), 1835 | DOI

[5] Eisenriegler E., Burkhardt T., Phys. Rev., B25 (1982), 3283 | DOI

[6] Burkhardt T., Eisenriegler E., Phys. Rev., B24 (1981), 1236 | DOI

[7] Kadanoff L. P., Wegner F. J., Phys. Rev., B4 (1971), 3989 | DOI | MR

[8] Bariev R., ZhETF, 77 (1979), 1217

[9] Fisher M., Physica, 106A (1981), 28 | DOI | MR

[10] Burkhardt T., Phys. Rev. Lett., 48 (1982), 216 | DOI

[11] Burkhardt T., Guim I., J. Phys. A: Math. Gen., 15 (1982), L305 | DOI | MR

[12] Bariev R. Z., Ilaldinov I. Z., J. Phys. A: Math. Gen., 22 (1989), L879 | DOI | MR

[13] Berlin T. H., Kac M., Phys. Rev., 86 (1952), 861 | DOI | MR

[14] Wilson K. G., Kogut J. B., Phys. Rep., 12C (1974), 75 | DOI | Zbl

[15] Scherbina M. N., TMF, 77:3 (1988), 460–471 | MR

[16] Patashinskii A. Z., Pokrovskii V. L., Fluktuatsionnaya teoriya fazovykh perekhodov, Nauka, M., 1982 | MR

[17] Bariev R., ZhETF, 94 (1988), 374