The~$n\to\infty$ limit of the $n$-vector model with large defects
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 86 (1991) no. 3, pp. 448-459
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The correlation functions of the three-dimensional $n$-vector model are
investigated in the limit $n\to\infty$ near a large defect with dimension $d'$.
It is shown that at the critical point the correlation function behaves
nonuniversally when $d'=1$ and that scaling is violated when $d'=2$. The local magnetization behaves similarly. The calculations have been made to the second order in the parameter $\lambda$, which characterizes the strength
of the defect.
			
            
            
            
          
        
      @article{TMF_1991_86_3_a13,
     author = {R. Z. Bariev and I. Z. Ilaldinov},
     title = {The~$n\to\infty$ limit of the $n$-vector model with large defects},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {448--459},
     publisher = {mathdoc},
     volume = {86},
     number = {3},
     year = {1991},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1991_86_3_a13/}
}
                      
                      
                    TY - JOUR AU - R. Z. Bariev AU - I. Z. Ilaldinov TI - The~$n\to\infty$ limit of the $n$-vector model with large defects JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1991 SP - 448 EP - 459 VL - 86 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1991_86_3_a13/ LA - ru ID - TMF_1991_86_3_a13 ER -
R. Z. Bariev; I. Z. Ilaldinov. The~$n\to\infty$ limit of the $n$-vector model with large defects. Teoretičeskaâ i matematičeskaâ fizika, Tome 86 (1991) no. 3, pp. 448-459. http://geodesic.mathdoc.fr/item/TMF_1991_86_3_a13/
