Bound states and resonances of the energy operator of a single-magnon spin-polaron system
Teoretičeskaâ i matematičeskaâ fizika, Tome 86 (1991) no. 3, pp. 420-424
Cet article a éte moissonné depuis la source Math-Net.Ru
A spin–polaron bound state for arbitrary dimensions, and also a spin–polaron resonance – a quasistationary state – are investigated. In the case of dimensions $\nu=1$ and 2, it is shown that for all values of the total quasimomentum $\lambda$ and for arbitrary parameters of the system there exists a unique “spin–polaron” bound state. In addition, uniqueness of the physical resonance for $\nu=1$ and $A\not=0$ is proved, and for small $A\not=0$ and any dimension $\nu$ the width of the physical resonance is also found.
@article{TMF_1991_86_3_a10,
author = {Zh. I. Abdullaev},
title = {Bound states and resonances of the energy operator of a~single-magnon spin-polaron system},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {420--424},
year = {1991},
volume = {86},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1991_86_3_a10/}
}
TY - JOUR AU - Zh. I. Abdullaev TI - Bound states and resonances of the energy operator of a single-magnon spin-polaron system JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1991 SP - 420 EP - 424 VL - 86 IS - 3 UR - http://geodesic.mathdoc.fr/item/TMF_1991_86_3_a10/ LA - ru ID - TMF_1991_86_3_a10 ER -
Zh. I. Abdullaev. Bound states and resonances of the energy operator of a single-magnon spin-polaron system. Teoretičeskaâ i matematičeskaâ fizika, Tome 86 (1991) no. 3, pp. 420-424. http://geodesic.mathdoc.fr/item/TMF_1991_86_3_a10/
[1] Minlos R. A., Mogilner A. I., Schrödinger operators, standard and non-standard (Dubna, 6–10 September, 1988), 243–259
[2] Mamatov Sh. S., Minlos R. A., TMF, 58:3 (1984), 323–328 | MR
[3] Izyumov Yu. A., Medvedev M. V., ZhETF, 1970, no. 2(8), 553–560 | MR
[4] Lakaev S. N., Trudy seminara im. I. G. Petrovskogo, 11, 1986, 210–238 | MR | Zbl
[5] Akhiezer N. I., Glazman I. M., Teoriya lineinykh operatorov v gilbertovom prostranstve, Nauka, M., 1966 | MR | Zbl
[6] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki, Mir, M., 1982 | MR
[7] Fedoryuk M. V., Metod perevala, Nauka, M., 1977 | MR
[8] Gelfand I. M., Shilov G. E., Obobschennye funktsii i deistviya nad nimi, Fizmatgiz, M., 1958 | MR