Bound states and resonances of the energy operator of a single-magnon spin-polaron system
Teoretičeskaâ i matematičeskaâ fizika, Tome 86 (1991) no. 3, pp. 420-424 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A spin–polaron bound state for arbitrary dimensions, and also a spin–polaron resonance – a quasistationary state – are investigated. In the case of dimensions $\nu=1$ and 2, it is shown that for all values of the total quasimomentum $\lambda$ and for arbitrary parameters of the system there exists a unique “spin–polaron” bound state. In addition, uniqueness of the physical resonance for $\nu=1$ and $A\not=0$ is proved, and for small $A\not=0$ and any dimension $\nu$ the width of the physical resonance is also found.
@article{TMF_1991_86_3_a10,
     author = {Zh. I. Abdullaev},
     title = {Bound states and resonances of the energy operator of a~single-magnon spin-polaron system},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {420--424},
     year = {1991},
     volume = {86},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1991_86_3_a10/}
}
TY  - JOUR
AU  - Zh. I. Abdullaev
TI  - Bound states and resonances of the energy operator of a single-magnon spin-polaron system
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1991
SP  - 420
EP  - 424
VL  - 86
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1991_86_3_a10/
LA  - ru
ID  - TMF_1991_86_3_a10
ER  - 
%0 Journal Article
%A Zh. I. Abdullaev
%T Bound states and resonances of the energy operator of a single-magnon spin-polaron system
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1991
%P 420-424
%V 86
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1991_86_3_a10/
%G ru
%F TMF_1991_86_3_a10
Zh. I. Abdullaev. Bound states and resonances of the energy operator of a single-magnon spin-polaron system. Teoretičeskaâ i matematičeskaâ fizika, Tome 86 (1991) no. 3, pp. 420-424. http://geodesic.mathdoc.fr/item/TMF_1991_86_3_a10/

[1] Minlos R. A., Mogilner A. I., Schrödinger operators, standard and non-standard (Dubna, 6–10 September, 1988), 243–259

[2] Mamatov Sh. S., Minlos R. A., TMF, 58:3 (1984), 323–328 | MR

[3] Izyumov Yu. A., Medvedev M. V., ZhETF, 1970, no. 2(8), 553–560 | MR

[4] Lakaev S. N., Trudy seminara im. I. G. Petrovskogo, 11, 1986, 210–238 | MR | Zbl

[5] Akhiezer N. I., Glazman I. M., Teoriya lineinykh operatorov v gilbertovom prostranstve, Nauka, M., 1966 | MR | Zbl

[6] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki, Mir, M., 1982 | MR

[7] Fedoryuk M. V., Metod perevala, Nauka, M., 1977 | MR

[8] Gelfand I. M., Shilov G. E., Obobschennye funktsii i deistviya nad nimi, Fizmatgiz, M., 1958 | MR