Remark on the mean field limit for multicomponent Gibbs systems with neutrality condition
Teoretičeskaâ i matematičeskaâ fizika, Tome 86 (1991) no. 2, pp. 257-261 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The mean field limit is obtained for classical and quantum (Boltzmann statistics) neutral Gibbs systems of charged particles interacting through a two-body integrable or nonintegrable potential.
@article{TMF_1991_86_2_a8,
     author = {V. V. Gorunovich and V. I. Skripnik},
     title = {Remark on the mean field limit for multicomponent {Gibbs} systems with neutrality condition},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {257--261},
     year = {1991},
     volume = {86},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1991_86_2_a8/}
}
TY  - JOUR
AU  - V. V. Gorunovich
AU  - V. I. Skripnik
TI  - Remark on the mean field limit for multicomponent Gibbs systems with neutrality condition
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1991
SP  - 257
EP  - 261
VL  - 86
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1991_86_2_a8/
LA  - ru
ID  - TMF_1991_86_2_a8
ER  - 
%0 Journal Article
%A V. V. Gorunovich
%A V. I. Skripnik
%T Remark on the mean field limit for multicomponent Gibbs systems with neutrality condition
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1991
%P 257-261
%V 86
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1991_86_2_a8/
%G ru
%F TMF_1991_86_2_a8
V. V. Gorunovich; V. I. Skripnik. Remark on the mean field limit for multicomponent Gibbs systems with neutrality condition. Teoretičeskaâ i matematičeskaâ fizika, Tome 86 (1991) no. 2, pp. 257-261. http://geodesic.mathdoc.fr/item/TMF_1991_86_2_a8/

[1] Spohn H., Rev. Mod. Phys., 52:3 (1980), 569–615 | DOI | MR

[2] Grewe N., Klein W., J. Math. Phys., 18:9 (1977), 1729–1740 | DOI

[3] Kennedy T., Commun. Math. Phys., 92:2 (1983), 269–294 | DOI | MR | Zbl

[4] Fontaine J. R., Commun. Math. Phys., 103:2 (1986), 241–257 | DOI | MR | Zbl

[5] Brydges P., Commun. Math. Phys., 73:1 (1980), 197–246 | DOI | MR

[6] Frohlich J., Park Y. M., Commun. Math. Phys., 59:2 (1978), 235–266 | DOI | MR