Remark on the mean field limit for multicomponent Gibbs systems with neutrality condition
Teoretičeskaâ i matematičeskaâ fizika, Tome 86 (1991) no. 2, pp. 257-261
Cet article a éte moissonné depuis la source Math-Net.Ru
The mean field limit is obtained for classical and quantum (Boltzmann statistics) neutral Gibbs systems of charged particles interacting through a two-body integrable or nonintegrable potential.
@article{TMF_1991_86_2_a8,
author = {V. V. Gorunovich and V. I. Skripnik},
title = {Remark on the mean field limit for multicomponent {Gibbs} systems with neutrality condition},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {257--261},
year = {1991},
volume = {86},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1991_86_2_a8/}
}
TY - JOUR AU - V. V. Gorunovich AU - V. I. Skripnik TI - Remark on the mean field limit for multicomponent Gibbs systems with neutrality condition JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1991 SP - 257 EP - 261 VL - 86 IS - 2 UR - http://geodesic.mathdoc.fr/item/TMF_1991_86_2_a8/ LA - ru ID - TMF_1991_86_2_a8 ER -
V. V. Gorunovich; V. I. Skripnik. Remark on the mean field limit for multicomponent Gibbs systems with neutrality condition. Teoretičeskaâ i matematičeskaâ fizika, Tome 86 (1991) no. 2, pp. 257-261. http://geodesic.mathdoc.fr/item/TMF_1991_86_2_a8/
[1] Spohn H., Rev. Mod. Phys., 52:3 (1980), 569–615 | DOI | MR
[2] Grewe N., Klein W., J. Math. Phys., 18:9 (1977), 1729–1740 | DOI
[3] Kennedy T., Commun. Math. Phys., 92:2 (1983), 269–294 | DOI | MR | Zbl
[4] Fontaine J. R., Commun. Math. Phys., 103:2 (1986), 241–257 | DOI | MR | Zbl
[5] Brydges P., Commun. Math. Phys., 73:1 (1980), 197–246 | DOI | MR
[6] Frohlich J., Park Y. M., Commun. Math. Phys., 59:2 (1978), 235–266 | DOI | MR