Field form of dynamics and statistics of systems of particles with electromagnetic interaction
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 86 (1991) no. 2, pp. 231-243
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			It is shown that the equations of the dynamics of $N$ interacting particles can be represented for any $N$ in the form of a BBGKY hierarchy and a Liouville equation. A similar representation has been obtained for systems of charged particles in their electromagnetic self-field. This has made it possible to use the BBGKY hierarchy as a method of obtaining
statistical equations. Transition to nondeterministic states of a particle-field system has the consequence that both the particle and the field states become nondeterministic due to the appearance of transition probabilities. The BBGKY hierarchy of evolution equations
branches. In $7N$-dimensional phase spaces, there is no branching.
			
            
            
            
          
        
      @article{TMF_1991_86_2_a6,
     author = {L. S. Kuz'menkov},
     title = {Field form of dynamics and statistics of systems of particles with electromagnetic interaction},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {231--243},
     publisher = {mathdoc},
     volume = {86},
     number = {2},
     year = {1991},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1991_86_2_a6/}
}
                      
                      
                    TY - JOUR AU - L. S. Kuz'menkov TI - Field form of dynamics and statistics of systems of particles with electromagnetic interaction JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1991 SP - 231 EP - 243 VL - 86 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1991_86_2_a6/ LA - ru ID - TMF_1991_86_2_a6 ER -
L. S. Kuz'menkov. Field form of dynamics and statistics of systems of particles with electromagnetic interaction. Teoretičeskaâ i matematičeskaâ fizika, Tome 86 (1991) no. 2, pp. 231-243. http://geodesic.mathdoc.fr/item/TMF_1991_86_2_a6/
