Field form of dynamics and statistics of systems of particles with electromagnetic interaction
Teoretičeskaâ i matematičeskaâ fizika, Tome 86 (1991) no. 2, pp. 231-243 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is shown that the equations of the dynamics of $N$ interacting particles can be represented for any $N$ in the form of a BBGKY hierarchy and a Liouville equation. A similar representation has been obtained for systems of charged particles in their electromagnetic self-field. This has made it possible to use the BBGKY hierarchy as a method of obtaining statistical equations. Transition to nondeterministic states of a particle-field system has the consequence that both the particle and the field states become nondeterministic due to the appearance of transition probabilities. The BBGKY hierarchy of evolution equations branches. In $7N$-dimensional phase spaces, there is no branching.
@article{TMF_1991_86_2_a6,
     author = {L. S. Kuz'menkov},
     title = {Field form of dynamics and statistics of systems of particles with electromagnetic interaction},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {231--243},
     year = {1991},
     volume = {86},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1991_86_2_a6/}
}
TY  - JOUR
AU  - L. S. Kuz'menkov
TI  - Field form of dynamics and statistics of systems of particles with electromagnetic interaction
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1991
SP  - 231
EP  - 243
VL  - 86
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1991_86_2_a6/
LA  - ru
ID  - TMF_1991_86_2_a6
ER  - 
%0 Journal Article
%A L. S. Kuz'menkov
%T Field form of dynamics and statistics of systems of particles with electromagnetic interaction
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1991
%P 231-243
%V 86
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1991_86_2_a6/
%G ru
%F TMF_1991_86_2_a6
L. S. Kuz'menkov. Field form of dynamics and statistics of systems of particles with electromagnetic interaction. Teoretičeskaâ i matematičeskaâ fizika, Tome 86 (1991) no. 2, pp. 231-243. http://geodesic.mathdoc.fr/item/TMF_1991_86_2_a6/

[1] Balescu R., Kotera T., Physica, 33 (1967), 581–594 | DOI | Zbl

[2] Klimontovich Yu. L., Kineticheskaya teoriya elektromagnitnykh protsessov, Nauka, M., 1980

[3] Kuzmenkov L. S., DAN SSSR, 241:2 (1978), 322–325 | MR

[4] Kuzmenkov L. S., Uravnenie evolyutsii vo vremeni statisticheskoi sistemy dvizhuschikhsya zaryadov, Preprint No 25/1981, MGU, M., 1980

[5] Kuzmenkov L. S., Problemy relyativistskoi kineticheskoi teorii plazmy, Avtoref. dis. na soiskanie uch. st. dokt. fiz.-matem. nauk, MGU, M., 1984

[6] Umstadter D., Williams R., Clayton C., Joshi C., Phys. Rev. Lett., 59 (1987), 292 | DOI

[7] Polyakov P. A., TMF, 76:3 (1988), 393–400

[8] Pavlotskii I. P., Nachala slaborelyativistskoi statisticheskoi mekhaniki, Vysshaya shkola, M., 1983

[9] Grassi F., Hakim R., Phys. Lett., A116:1 (1986), 30–35 | DOI

[10] Lapiedra R., Santos E., Phys. Rev., A27:1 (1983), 422–430 | DOI | MR

[11] Bogolyubov N. N., Problemy dinamicheskoi teorii v statisticheskoi fizike, Gostekhizdat, M., 1946 | MR

[12] Klimontovich Yu. L., Statisticheskaya teoriya elektromagnitnykh protsessov v plazme, MGU, M., 1964 | MR

[13] De Groot S., Van Leuven V., Van Vert Kh., Relyativistskaya kineticheskaya teoriya, Mir, M., 1983 | MR