Stochastic stability of dispersing billiards
Teoretičeskaâ i matematičeskaâ fizika, Tome 86 (1991) no. 2, pp. 221-230 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The effect of small random perturbations on the metric, geometric, and topological properties of dispersing billiards is studied.
@article{TMF_1991_86_2_a5,
     author = {S. E. Trubetskoi},
     title = {Stochastic stability of dispersing billiards},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {221--230},
     year = {1991},
     volume = {86},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1991_86_2_a5/}
}
TY  - JOUR
AU  - S. E. Trubetskoi
TI  - Stochastic stability of dispersing billiards
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1991
SP  - 221
EP  - 230
VL  - 86
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1991_86_2_a5/
LA  - ru
ID  - TMF_1991_86_2_a5
ER  - 
%0 Journal Article
%A S. E. Trubetskoi
%T Stochastic stability of dispersing billiards
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1991
%P 221-230
%V 86
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1991_86_2_a5/
%G ru
%F TMF_1991_86_2_a5
S. E. Trubetskoi. Stochastic stability of dispersing billiards. Teoretičeskaâ i matematičeskaâ fizika, Tome 86 (1991) no. 2, pp. 221-230. http://geodesic.mathdoc.fr/item/TMF_1991_86_2_a5/

[1] Kifer Y., J. Anal. Math., 47 (1986), 111–149 | DOI | MR

[2] Young L.-S., Erg. Th. Dyn. Sys., 6 (1986), 311–319 | MR | Zbl

[3] Eloranta K., Alpha-Congruence for Billiards and Markov Processes, Ph. D. Thesis, Stanford, 1988 | MR

[4] Sinai Ya. G., UMN, 25:2 (1970), 141–192 | MR | Zbl

[5] Krámli A., Simányi N., Szász D., Nonlinearity, 2 (1989), 311–326 | DOI | MR | Zbl

[6] Ornstein D., Ergodic Theory. Ramdomness and Dynamical Systems, Yale University Press, 1974 | MR | Zbl

[7] Ornstein D., Weiss B., “Statistical Properties of Chaotic Systems”, Bulletin AMS, 23 (1990) | MR

[8] Gallavotti G., Commun. Math. Phys., 38 (1974), 83–101 | DOI | MR | Zbl

[9] Ornstein D., Shields P., Adv. in Math., 10 (1973), 143–146 | DOI | MR | Zbl

[10] Troubetzkoy S. E., Nonlinearity, 3 (1990) | DOI | MR | Zbl

[11] Kalikow S., “$T$, $T^{-1}$ Transformation is not Loosely Bernoulli”, Ann. Math., 115 (1982), 393–409 | DOI | MR | Zbl

[12] Sinai Ya. G., Izv. AN SSSR. Ser. Mat., 30 (1966), 15–68 | MR | Zbl

[13] Khovanskii A. N., Prilozhenie tsepnykh drobei i ikh obobschenii k voprosam priblizhennogo analiza, Gostekhizdat, M., 1956

[14] Bunimovich L. A., Mat. sb., 94:1 (1974), 49–73 | MR | Zbl