@article{TMF_1991_86_2_a5,
author = {S. E. Trubetskoi},
title = {Stochastic stability of dispersing billiards},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {221--230},
year = {1991},
volume = {86},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1991_86_2_a5/}
}
S. E. Trubetskoi. Stochastic stability of dispersing billiards. Teoretičeskaâ i matematičeskaâ fizika, Tome 86 (1991) no. 2, pp. 221-230. http://geodesic.mathdoc.fr/item/TMF_1991_86_2_a5/
[1] Kifer Y., J. Anal. Math., 47 (1986), 111–149 | DOI | MR
[2] Young L.-S., Erg. Th. Dyn. Sys., 6 (1986), 311–319 | MR | Zbl
[3] Eloranta K., Alpha-Congruence for Billiards and Markov Processes, Ph. D. Thesis, Stanford, 1988 | MR
[4] Sinai Ya. G., UMN, 25:2 (1970), 141–192 | MR | Zbl
[5] Krámli A., Simányi N., Szász D., Nonlinearity, 2 (1989), 311–326 | DOI | MR | Zbl
[6] Ornstein D., Ergodic Theory. Ramdomness and Dynamical Systems, Yale University Press, 1974 | MR | Zbl
[7] Ornstein D., Weiss B., “Statistical Properties of Chaotic Systems”, Bulletin AMS, 23 (1990) | MR
[8] Gallavotti G., Commun. Math. Phys., 38 (1974), 83–101 | DOI | MR | Zbl
[9] Ornstein D., Shields P., Adv. in Math., 10 (1973), 143–146 | DOI | MR | Zbl
[10] Troubetzkoy S. E., Nonlinearity, 3 (1990) | DOI | MR | Zbl
[11] Kalikow S., “$T$, $T^{-1}$ Transformation is not Loosely Bernoulli”, Ann. Math., 115 (1982), 393–409 | DOI | MR | Zbl
[12] Sinai Ya. G., Izv. AN SSSR. Ser. Mat., 30 (1966), 15–68 | MR | Zbl
[13] Khovanskii A. N., Prilozhenie tsepnykh drobei i ikh obobschenii k voprosam priblizhennogo analiza, Gostekhizdat, M., 1956
[14] Bunimovich L. A., Mat. sb., 94:1 (1974), 49–73 | MR | Zbl