Correlation properties of bose systems of polariton type
Teoretičeskaâ i matematičeskaâ fizika, Tome 86 (1991) no. 2, pp. 285-293 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The nonequilibrium quantum correlation and fluctuation properties of a two-mode Bose system with effective Hamiltonian of polariton type are investigated. The exact evolution of the operators is found by a Bogolyubov canonical transformation. The possibility of periodic variation of the statistical properties of such a system is demonstrated, and also the occurrence of a squeezed state of a field initially in a random state. Investigation of the cross correlation function demonstrates the possibility of exchange of statistical properties between interacting fields.
@article{TMF_1991_86_2_a11,
     author = {W. Chmielowski and A. V. Chizhov},
     title = {Correlation properties of bose systems of polariton type},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {285--293},
     year = {1991},
     volume = {86},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1991_86_2_a11/}
}
TY  - JOUR
AU  - W. Chmielowski
AU  - A. V. Chizhov
TI  - Correlation properties of bose systems of polariton type
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1991
SP  - 285
EP  - 293
VL  - 86
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1991_86_2_a11/
LA  - ru
ID  - TMF_1991_86_2_a11
ER  - 
%0 Journal Article
%A W. Chmielowski
%A A. V. Chizhov
%T Correlation properties of bose systems of polariton type
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1991
%P 285-293
%V 86
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1991_86_2_a11/
%G ru
%F TMF_1991_86_2_a11
W. Chmielowski; A. V. Chizhov. Correlation properties of bose systems of polariton type. Teoretičeskaâ i matematičeskaâ fizika, Tome 86 (1991) no. 2, pp. 285-293. http://geodesic.mathdoc.fr/item/TMF_1991_86_2_a11/

[1] Brown Hanbury R., Twiss R. Q., Nature, 177 (1956), 27–29 | DOI

[2] Bogolyubov N. N. (ml.), Kozerovski M., Chan Kuang, Shumovskii A. S., EChAYa, 19:4 (1988), 831–863 | MR

[3] Walls D. F., Nature, 306 (1983), 141–146 | DOI

[4] Perina Ya., Kvantovaya statistika lineinykh i nelineinykh opticheskikh yavlenii, Mir, M., 1987 | MR

[5] Malkin I. A., Manko V. I., Dinamicheskie simmetrii i kogerentnye sostoyaniya kvantovykh sistem, Nauka, M., 1979 | MR

[6] Bogolyubov N. N. (ml.), Sadovnikov B. I., Shumovskii A. S., Matematicheskie metody statisticheskoi mekhaniki modelnykh sistem, Nauka, M., 1989 | MR

[7] Yuen H. P., Phys. Rev., A13:6 (1976), 2226–2243 | DOI

[8] Tanas R., Coherence and quantum optics, V. 5, eds. Mandel L., Wolf E., Plenum, N. Y., 1984, 643–660

[9] Ilinskii Yu. A., Keldysh L. V., Vzaimodeistvie elektromagnitnogo izlucheniya s veschestvom, MGU, M., 1989

[10] Lyuisell U., Izluchenie i shumy v kvantovoi elektronike, Nauka, M., 1972

[11] Slusher R. E., Hollberg L. E., Yurke B., Mertz J. C., Valley J. F., Phys. Rev. Lett., 55:22 (1985), 2409–2412 | DOI