Real non-Archimedean structure of spacetime
Teoretičeskaâ i matematičeskaâ fizika, Tome 86 (1991) no. 2, pp. 177-190 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A study is made of the process of measurement by means of $m$-adic (and, in particular, $p$-adic) numbers. It is shown that $m$-adic variables can be interpreted as variables that are infinite!y large compared with the unit of measurement. Morita's F function is used to construct a Bargmann–Fock representation for a non-Archimedean harmonic oscillator with infinitely high energies. A gauge connection between the real geometry of Minkowski spacetime $M_4$ and non-Archimedean geometry of the microscopic world is considered. Groups of non-Archimedean symmetries are realized as internal symmetries. The concept of a real non-Archimedean manifold is introduced. A group of conformal transformations associated with a Galois group is constructed.
@article{TMF_1991_86_2_a1,
     author = {A. Yu. Khrennikov},
     title = {Real {non-Archimedean} structure of spacetime},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {177--190},
     year = {1991},
     volume = {86},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1991_86_2_a1/}
}
TY  - JOUR
AU  - A. Yu. Khrennikov
TI  - Real non-Archimedean structure of spacetime
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1991
SP  - 177
EP  - 190
VL  - 86
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1991_86_2_a1/
LA  - ru
ID  - TMF_1991_86_2_a1
ER  - 
%0 Journal Article
%A A. Yu. Khrennikov
%T Real non-Archimedean structure of spacetime
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1991
%P 177-190
%V 86
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1991_86_2_a1/
%G ru
%F TMF_1991_86_2_a1
A. Yu. Khrennikov. Real non-Archimedean structure of spacetime. Teoretičeskaâ i matematičeskaâ fizika, Tome 86 (1991) no. 2, pp. 177-190. http://geodesic.mathdoc.fr/item/TMF_1991_86_2_a1/

[1] Vladimirov V. S., Volovich I. V., TMF, 59:1 (1984), 3–27 | MR | Zbl

[2] Volovich I. V., Number theory as the ultimate physical theory, Preprint CERN-TH. 4981/87, CERN, Geneva, 1987 | MR

[3] Freund P. G. O., Olson M., Phys. Lett. B, 199 (1987), 186–190 ; Nucl. Phys. B, 297 (1988), 86–97 ; Freund P. G. O., Witten E., Phys. Lett. B, 199 (1987), 191–195 ; Volovich I. V., Lett. Math. Phys., 16 (1988), 61–67 ; Vladimirov V. S., Volovich I. V., Commun. Math. Phys., 123 (1989), 659–676 ; Frampton P. H., Okada Y., Phys. Rev. Lett., 60 (1988), 484–486 ; Grossman B., Phys. Lett. B, 197 (1987), 101–106 ; Aref'eva I. Ya., Dragovic B. G., Volovich I. V., Phys. Lett. B, 200 (1988), 512–516 | DOI | MR | DOI | MR | DOI | MR | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | DOI | MR | DOI | MR

[4] Khrennikov A. Yu., TMF, 83:3 (1990), 406–418 | MR

[5] Borevich Z. I., Shafarevich I. R., Teoriya chisel, Izd. 3, Nauka, M., 1985 ; Ленг С., Алгебра, Мир, М., 1968; Гельфанд И. М., Граев М. И., Пятецкий-Шапиро И. И., Теория представлений и автоморфные функции, Наука, М., 1966 ; Владимиров В. С., УМН, 43:5 (1988), 17–53 ; Monna A. F., Analyse non-archimedienne, Univ. Press, Berlin, 1970 | MR | Zbl | MR | MR | Zbl | MR

[6] Morita Y., J. Fac. Sci. Univ. Tokyo, 22 (1975), 255–266 ; Gross B. H., Koblitz N., Ann. of Math., 109:3 (1979), 569–581 | MR | Zbl | DOI | MR | Zbl

[7] Konopleva N. P., Popov V. N., Kalibrovochnye polya, Atomizdat, M., 1980 | MR

[8] Slavnov A. A., Faddeev L. D., Vvedenie v kvantovuyu teoriyu kalibrovochnykh polei, Nauka, M., 1976 | MR

[9] Martin I. L., Proc. Roy. Soc. London A, 251 (1959), 536–543 ; Березин Ф. А., Введение в алгебру и анализ с антикоммутирующими переменными, МГУ, М., 1983 ; Лейтес Д. А., Теория супермногообразий, Петрозаводский гос. университет, Петрозаводск, 1983; Манин Ю. И., Калибровочные поля и комплексная геометрия, Наука, М., 1987 ; Konstant B., Lecture Notes in Math., 570, 1977 | DOI | MR | MR | MR

[10] Volovich I. V., “$\Lambda$-supermnogoobraziya i rassloeniya”, DAN SSSR, 269:3 (1983), 524–528 ; De Witt B., Supermanyfolds, Cambridge Univ. Press, Cambridge, 1984 ; Rogers A., J. Math. Phys., 21 (1980), 1352–1365 | MR | MR | DOI | MR | Zbl

[11] Gervais I. L., Phys. Lett. B, 201 (1988), 306–310 | DOI | MR