Real non-Archimedean structure of spacetime
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 86 (1991) no. 2, pp. 177-190
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A study is made of the process of measurement by means of $m$-adic (and, in particular, 
$p$-adic) numbers. It is shown that $m$-adic variables can be interpreted as variables that are infinite!y large compared with the unit of measurement. Morita's F function is used to construct a Bargmann–Fock representation for a non-Archimedean harmonic oscillator
with infinitely high energies. A gauge connection between the real geometry of Minkowski spacetime $M_4$ and non-Archimedean geometry of the microscopic world is considered. Groups of non-Archimedean symmetries are realized as internal symmetries. The concept of a real non-Archimedean manifold is introduced. A group of conformal transformations
associated with a Galois group is constructed.
			
            
            
            
          
        
      @article{TMF_1991_86_2_a1,
     author = {A. Yu. Khrennikov},
     title = {Real {non-Archimedean} structure of spacetime},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {177--190},
     publisher = {mathdoc},
     volume = {86},
     number = {2},
     year = {1991},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1991_86_2_a1/}
}
                      
                      
                    A. Yu. Khrennikov. Real non-Archimedean structure of spacetime. Teoretičeskaâ i matematičeskaâ fizika, Tome 86 (1991) no. 2, pp. 177-190. http://geodesic.mathdoc.fr/item/TMF_1991_86_2_a1/
