Real non-Archimedean structure of spacetime
Teoretičeskaâ i matematičeskaâ fizika, Tome 86 (1991) no. 2, pp. 177-190

Voir la notice de l'article provenant de la source Math-Net.Ru

A study is made of the process of measurement by means of $m$-adic (and, in particular, $p$-adic) numbers. It is shown that $m$-adic variables can be interpreted as variables that are infinite!y large compared with the unit of measurement. Morita's F function is used to construct a Bargmann–Fock representation for a non-Archimedean harmonic oscillator with infinitely high energies. A gauge connection between the real geometry of Minkowski spacetime $M_4$ and non-Archimedean geometry of the microscopic world is considered. Groups of non-Archimedean symmetries are realized as internal symmetries. The concept of a real non-Archimedean manifold is introduced. A group of conformal transformations associated with a Galois group is constructed.
@article{TMF_1991_86_2_a1,
     author = {A. Yu. Khrennikov},
     title = {Real {non-Archimedean} structure of spacetime},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {177--190},
     publisher = {mathdoc},
     volume = {86},
     number = {2},
     year = {1991},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1991_86_2_a1/}
}
TY  - JOUR
AU  - A. Yu. Khrennikov
TI  - Real non-Archimedean structure of spacetime
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1991
SP  - 177
EP  - 190
VL  - 86
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1991_86_2_a1/
LA  - ru
ID  - TMF_1991_86_2_a1
ER  - 
%0 Journal Article
%A A. Yu. Khrennikov
%T Real non-Archimedean structure of spacetime
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1991
%P 177-190
%V 86
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1991_86_2_a1/
%G ru
%F TMF_1991_86_2_a1
A. Yu. Khrennikov. Real non-Archimedean structure of spacetime. Teoretičeskaâ i matematičeskaâ fizika, Tome 86 (1991) no. 2, pp. 177-190. http://geodesic.mathdoc.fr/item/TMF_1991_86_2_a1/