A class of exactly solvable many-particle models
Teoretičeskaâ i matematičeskaâ fizika, Tome 86 (1991) no. 1, pp. 98-110 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A class of many-particle quantum models with arbitrary space dimension and arbitrary particle statistics for which it is possible to construct a number of exact eigenstates is found. In the models, the following assumptions are made: 1) the presence of two (or $2m$) components with “symmetric” matrix elements of the two-body interactions (equality up to the sign of all the interaction potentials and equality up to a phase factor of the wave functions of particles of two species; otherwise the two-body interactions are arbitrary), 2) degeneracy of the (total) spectrum of the free particles. The exact states correspond to a condensate of noninteracting composite particles (“excitons”) that are not precisely bosons and to excitations over the condensate. The possibility of exact solution rests on the symmetry with respect to continuous rotations in the isospin space, this corresponding to Bogolyubov transformations with momentum-independent parameters $u$, $v$. The class includes, in particular, two-dimensional electron-hole systems in a strong magnetic field.
@article{TMF_1991_86_1_a7,
     author = {A. B. Dzyubenko and Yu. E. Lozovik},
     title = {A~class of exactly solvable many-particle models},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {98--110},
     year = {1991},
     volume = {86},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1991_86_1_a7/}
}
TY  - JOUR
AU  - A. B. Dzyubenko
AU  - Yu. E. Lozovik
TI  - A class of exactly solvable many-particle models
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1991
SP  - 98
EP  - 110
VL  - 86
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1991_86_1_a7/
LA  - ru
ID  - TMF_1991_86_1_a7
ER  - 
%0 Journal Article
%A A. B. Dzyubenko
%A Yu. E. Lozovik
%T A class of exactly solvable many-particle models
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1991
%P 98-110
%V 86
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1991_86_1_a7/
%G ru
%F TMF_1991_86_1_a7
A. B. Dzyubenko; Yu. E. Lozovik. A class of exactly solvable many-particle models. Teoretičeskaâ i matematičeskaâ fizika, Tome 86 (1991) no. 1, pp. 98-110. http://geodesic.mathdoc.fr/item/TMF_1991_86_1_a7/

[1] Mattis D. C., Lieb E. H., J. Math. Phys., 6:2 (1965), 304–312 ; Gugengolts N. M., Kvantovaya teoriya sistem mnogikh tel, Mir, M., 1967 | DOI | MR

[2] Taules D., Kvantovaya mekhanika sistem mnogikh chastits, Gl. 2, 7, Mir, M., 1975

[3] Bogolyubov N. N. (ml.), Metod issledovaniya modelnykh gamiltonianov, Nauka, M., 1974 | MR

[4] Goden M., Volnovaya funktsiya Bete, Mir, M., 1987 | MR

[5] Lerner I. V., Lozovik Yu. E., ZhETF, 80:4 (1981), 1488–1503; 82:4 (1982), 1188–1203

[6] Lerner I. V., Lozovik Yu. E., ZhETF, 78:3 (1980), 1167–1175

[7] Dzyubenko A. B., Lozovik Yu. E., FTT, 25:5 (1983), 1519–1521

[8] Bychkov Yu. A.. Iordanskii S. V., Eliashberg G. M., Poverkhnost, 1983, no. 3, 5–9 | MR

[9] Dzyubenko A. B., Lozovik Yu. E., FTT, 26:5 (1984), 1540–1541; Квантовая механика двумерной электронно-дырочной системы в сильном магнитном поле. I: Двухчастичные задачи, Препринт No 137, ФИАН, М., 1986; Квантовая механика двумерной электронно-дырочной системы в сильном магнитном поле. II: Многочастичные задачи, Препринт No 138, ФИАН, М., 1986

[10] Rice T. M., Paquet D., Ueda K., Helv. Phys. Acta, 58 (1985), 410–416 | MR

[11] Rasolt M., Halperin B. I., Vanderbilt D., Phys. Rev. Lett., 57:1 (1986), 126–129 | DOI

[12] Bychkov Yu. A., Iordanskii S. V., Eliashberg G. M., Pisma v ZhETF, 53:3 (1981), 152–155

[13] Kallin C., Halperin B. I., Phys. Rev. B, 30:10 (1984), 5655–5668 | DOI

[14] Bogolyubov N. N., ZhETF, 34:1 (1958), 58–65 | Zbl

[15] Bogolyubov N. N., Bogolyubov N. N. (ml.), Vvedenie v kvantovuyu statisticheskuyu mekhaniku, Chast III, Gl. 2, Nauka, M., 1984 | MR

[16] Keldysh L. V., Kozlov A. N., ZhETF, 54:3 (1968), 978–993

[17] Bardeen J., Cooper L. N., Schrieffer J., Phys. Rev., 108 (1957), 1157 | DOI | MR

[18] Dzyubenko A. B., Lozovik Yu. E., Simmetriya gamiltoniana dvukhkomponentnoi sistemy: kondensat sostavnykh chastits kak tochnoe sostoyanie, Preprint No 8, ISAN, Troitsk, 1989

[19] Boks R., Teoriya eksitonov, Gl. 2, p. 6, Mir, M., 1966 | MR

[20] Gorkov L. P., Dzyaloshinskii I. E., ZhETF, 53:2(8) (1967), 717–722

[21] Laughlin R. B., Phys. Rev. B, 27:6 (1983), 3383–3386 | DOI

[22] Lerner I. V., Lozovik Yu. E., Musin D. R., J. Phys., C14 (1980), L311–L315

[23] Dzyubenko A. B., FTT, 31:11 (1989), 84–91; Dzyubenko A. B., Solid State Commun., 74:5 (1990), 409–412 ; 75:6 | DOI