Scattering of slowly moving vortices in the Abelian $(2+1)$-dimensional Higgs model
Teoretičeskaâ i matematičeskaâ fizika, Tome 85 (1990) no. 3, pp. 397-411 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem of the scattering of vortices in the Abelian $(2+1)$-dimensional Higgs model is studied. Equations for the geodesics describing the motion of a system of two vortices are found in Manton's approach. It is shown that in the case of a head-on collision the vortices are scattered through $\pi/2$.
@article{TMF_1990_85_3_a5,
     author = {A. G. Sergeev and S. V. Chechin},
     title = {Scattering of~slowly moving vortices in~the {Abelian} $(2+1)$-dimensional {Higgs} model},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {397--411},
     year = {1990},
     volume = {85},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1990_85_3_a5/}
}
TY  - JOUR
AU  - A. G. Sergeev
AU  - S. V. Chechin
TI  - Scattering of slowly moving vortices in the Abelian $(2+1)$-dimensional Higgs model
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1990
SP  - 397
EP  - 411
VL  - 85
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1990_85_3_a5/
LA  - ru
ID  - TMF_1990_85_3_a5
ER  - 
%0 Journal Article
%A A. G. Sergeev
%A S. V. Chechin
%T Scattering of slowly moving vortices in the Abelian $(2+1)$-dimensional Higgs model
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1990
%P 397-411
%V 85
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1990_85_3_a5/
%G ru
%F TMF_1990_85_3_a5
A. G. Sergeev; S. V. Chechin. Scattering of slowly moving vortices in the Abelian $(2+1)$-dimensional Higgs model. Teoretičeskaâ i matematičeskaâ fizika, Tome 85 (1990) no. 3, pp. 397-411. http://geodesic.mathdoc.fr/item/TMF_1990_85_3_a5/

[1] Landau L. D., Lifshits E. M., Statisticheskaya fizika, chast 2, Nauka, M., 1978 | MR

[2] Nielsen H. B., Olesen P., Nucl. Phys., B61 (1973), 45–61 | DOI

[3] Shellard E. P. S., Nucl. Phys., B283 (1987), 624 | DOI

[4] Jacobs L., Rebbi C., Phys. Rev., B19 (1979), 4486–4494 | DOI | MR

[5] De Vega H., Schaposnik F., Phys. Rev., D14 (1976), 1100–1106

[6] Jaffe A., Taubes C. H., Vortices and monopoles, Birkhauser, Boston, 1980 | MR | Zbl

[7] Taubes C. H., Commun. Math. Phys., 72 (1980), 277 | DOI | MR | Zbl

[8] Manton N. S., Phys. Lett., 110B (1982), 54–56 | DOI | MR | Zbl

[9] Manton N. S., Phys. Lett., 154B (1985), 397–400 | DOI | MR

[10] Gibbons G. W., Manton N. S., Nucl. Phys., B274 (1986), 183 | DOI | MR

[11] Ruback P. J., Nucl. Phys., B296 (1988), 669–678 | DOI | MR

[12] Moriarty K. J. M., Myers E., Rebbi C., Phys. Lett., 207B (1988), 411–418 | DOI

[13] Atiyah M. F., Hitchin N. J., Phys. Lett., 107A (1985), 21 | DOI | MR | Zbl

[14] Atiyah M. F., Hitchin N. J., Phil. Trans. Roy. Soc. London, A315 (1985), 459–469 | DOI | MR | Zbl

[15] Ward R. S., Phys. Lett., 158B (1985), 424–428 | DOI | MR

[16] Kazdan J. L., Warner F. W., Ann. Math., 99 (1974), 14–47 | DOI | MR | Zbl