Lower Korteweg–de Vries equations and supersymmetric structure of the sine-Gordon and Liouville equations
Teoretičeskaâ i matematičeskaâ fizika, Tome 85 (1990) no. 3, pp. 376-387 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A continuation of the hierarchy of the Korteweg–de Vries equation in the direction corresponding to negative powers of the spectral parameter is constructed. Among the members of this hierarchy there are equations related by a Miura transformation to the sine-Gordon and Liouville equations. The supersymmetric structure of this connection is clarified.
@article{TMF_1990_85_3_a3,
     author = {V. A. Andreev and M. V. Burova},
     title = {Lower {Korteweg{\textendash}de~Vries} equations and supersymmetric structure of~the {sine-Gordon} and {Liouville} equations},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {376--387},
     year = {1990},
     volume = {85},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1990_85_3_a3/}
}
TY  - JOUR
AU  - V. A. Andreev
AU  - M. V. Burova
TI  - Lower Korteweg–de Vries equations and supersymmetric structure of the sine-Gordon and Liouville equations
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1990
SP  - 376
EP  - 387
VL  - 85
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1990_85_3_a3/
LA  - ru
ID  - TMF_1990_85_3_a3
ER  - 
%0 Journal Article
%A V. A. Andreev
%A M. V. Burova
%T Lower Korteweg–de Vries equations and supersymmetric structure of the sine-Gordon and Liouville equations
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1990
%P 376-387
%V 85
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1990_85_3_a3/
%G ru
%F TMF_1990_85_3_a3
V. A. Andreev; M. V. Burova. Lower Korteweg–de Vries equations and supersymmetric structure of the sine-Gordon and Liouville equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 85 (1990) no. 3, pp. 376-387. http://geodesic.mathdoc.fr/item/TMF_1990_85_3_a3/

[1] Bagchi B., Lahiri A., Roy P. K., Phys. Rev. D, 39:4 (1989), 1186–1189 | DOI | MR

[2] Hruby J., J. Phys. A: Math. Gen., 22:11 (1989), 1807–1818 | DOI | MR | Zbl

[3] Samokhin A. V., DAN SSSR, 251:3 (1980), 557–562 | MR | Zbl

[4] Samokhin A. V., DAN SSSR, 262:2 (1982), 274–279 | MR | Zbl

[5] Gelfand I. M., Dikii L. A., UMN, 30:5 (1975), 67–100 | MR | Zbl

[6] Andreev V. A., TMF, 29:2 (1976), 213–220 | MR

[7] Andreev V. A., Primenenie metoda obratnoi zadachi k uravneniyu $\sigma_{xt}=e^\sigma$, Preprint FIAN No 26, 1976, S. 1–21.

[8] Chodos A., Phys. Rev. D, 21:10 (1980), 2818–2824 | DOI | MR

[9] Cherednik I. V., Funkts. analiz i ego prilozh., 13:1 (1979), 81–82 | MR | Zbl

[10] Witten E., Nucl. Phys. B, 185:2 (1981), 513–541 | DOI | MR

[11] Takhtadzhyan L. A., ZhETF, 66:2 (1974), 476–489

[12] Gendenshtein L. E., Krive I. V., UFN, 146:3 (1985), 553–598 | DOI | MR