Invertible changes of variables generated by Bäcklund transformations
Teoretičeskaâ i matematičeskaâ fizika, Tome 85 (1990) no. 3, pp. 368-375
Cet article a éte moissonné depuis la source Math-Net.Ru
In the classification of partial differential equations, one cannot avoid the use of invertible changes of variables, which include not only the long-known point and contact transformations but also, for example, so-called symmetric and generalized contact transformations (reviewed by Mikhailov, Shabat, and Yamilov [1]). The present paper considers a further class of invertible changes of variables.
@article{TMF_1990_85_3_a2,
author = {R. I. Yamilov},
title = {Invertible changes of~variables generated {by~B\"acklund} transformations},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {368--375},
year = {1990},
volume = {85},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1990_85_3_a2/}
}
R. I. Yamilov. Invertible changes of variables generated by Bäcklund transformations. Teoretičeskaâ i matematičeskaâ fizika, Tome 85 (1990) no. 3, pp. 368-375. http://geodesic.mathdoc.fr/item/TMF_1990_85_3_a2/
[1] Mikhailov A. V., Shabat A. B., Yamilov R. I., UMN, 42:4 (1987), 3–53 | MR
[2] Weis J., J. Math. Phys., 28:9 (1987), 2025–2039 | DOI | MR | Zbl
[3] Svinolupov S. I., Sokolov V. V., Yamilov R. I., DAN SSSR, 271:4 (1983), 802–805 | MR | Zbl
[4] Shabat A. B., Yamilov R. I., Algebra i analiz, 2:2 (1990), 183–208 | MR | Zbl
[5] Svinolupov S. I., Sokolov V. V., Funkts. analiz i ego prilozh., 16:4 (1982), 86–87 | MR | Zbl
[6] Yamilov R. I., UMN, 38:6 (1983), 155–156
[7] Degasperis A., Santini P. M., Ablowitz M. J., J. Math. Phys., 26:10 (1985), 2469–2472 | DOI | MR | Zbl