Lagrangian BRST quantization and unitarity
Teoretičeskaâ i matematičeskaâ fizika, Tome 85 (1990) no. 3, pp. 323-348 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An effective action for gauge theories of general form is constructed in the framework of the Lagrangian approach on the basis of the unitarity condition for the $S$ matrix. Necessary conditions for the existence of a unitary $S$ matrix are formulated. An explicit expression for the effective action is obtained for a large class of physically interesting theories, including Yang–Mills fields, an antisynnnetric tensor field, and string field theory.
@article{TMF_1990_85_3_a0,
     author = {A. A. Slavnov and S. A. Frolov},
     title = {Lagrangian {BRST} quantization and unitarity},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {323--348},
     year = {1990},
     volume = {85},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1990_85_3_a0/}
}
TY  - JOUR
AU  - A. A. Slavnov
AU  - S. A. Frolov
TI  - Lagrangian BRST quantization and unitarity
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1990
SP  - 323
EP  - 348
VL  - 85
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1990_85_3_a0/
LA  - ru
ID  - TMF_1990_85_3_a0
ER  - 
%0 Journal Article
%A A. A. Slavnov
%A S. A. Frolov
%T Lagrangian BRST quantization and unitarity
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1990
%P 323-348
%V 85
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1990_85_3_a0/
%G ru
%F TMF_1990_85_3_a0
A. A. Slavnov; S. A. Frolov. Lagrangian BRST quantization and unitarity. Teoretičeskaâ i matematičeskaâ fizika, Tome 85 (1990) no. 3, pp. 323-348. http://geodesic.mathdoc.fr/item/TMF_1990_85_3_a0/

[1] Faddeev L. D., Popov V. N., Phys. Lett., 25B:1 (1967), 30–33

[2] De Witt B., Phys. Rev., 160 (1967), 1119–1123; 1195–1201

[3] Slavnov A. A., Frolov S. A., TMF, 75:2 (1988), 201–211 | MR

[4] Curci G., Ferrary R., Nuovo Cim., 35A (1976), 273–285 | DOI

[5] Kugo T., Ojima I., Suppl. Prog. Theor. Phys., 1979, no. 66, 1–130 | DOI | MR

[6] Becchi C., Rouet A., Stora R., Phys. Lett., 52B:3 (1974), 344–346 ; Ann. Phys., 98:2 (1976), 287–321 | DOI | MR | DOI | MR

[7] Tyutin I. V., Kalibrovochnaya invariantnost v teorii polya i statisticheskoi fizike v operatornoi formulirovke, Preprint FIAN No 39, FIAN, M., 1975

[8] De Witt B., van Holten J. W., Phys. Lett., 79B (1979), 389–393

[9] Batalin I. A., Fradkin E. S., Phys. Lett., 122B (1983), 157–162 ; Fradkin E. S., Vilkovisky G. A., Phys. Lett., 55B (1975), 224–227 | DOI | MR | DOI | MR

[10] Batalin I. A., Vilkovisky G. A., Phys. Rev., D28 (1983), 2567–2581 | MR

[11] Frolov S. A., Slavnov A. A., Phys. Lett., 218B:4 (1989), 461–464 | DOI

[12] Fisch J., Henneaux M., Stasheff J., Teitelboim C., Commun. Math. Phys., 120:2 (1989), 379–407 | DOI | MR | Zbl

[13] Fisch J., Henneaux M., Commun. Math. Phys., 128:3 (1990), 627–639 ; Henneaux M., Spacetime locality of the BRST formalism, Preprint ULB TH2/90-02 | DOI | MR

[14] Slavnov A. A., Phys. Lett., 217B:1 (1989), 91–94 | DOI | MR

[15] Frolov S. A., Phys. Lett., 229B:1 (1989), 37–40 | DOI | MR

[16] Witten E., Nucl. Phys., B268:2 (1986), 253–291 | DOI | MR

[17] Gross D., Jevicki A., Nucl. Phys., B283:1 (1987), 1–42

[18] Gross D., Jevicki A., Nucl. Phys., B287:2 (1987), 225–258 | DOI

[19] Gremmer E., Schwimmer A., Thorn C., Phys. Lett., 179B (1986), 57–62 | DOI

[20] Samuel P., Phys. Lett., 181B (1986), 255–260 | DOI | MR

[21] Horowitz G., Martin S., Nucl. Phys., B296 (1988), 220–257 | DOI | MR

[22] Bochicchio M., Phys. Lett., B188 (1987), 330–334 ; B193, 31–36 | DOI | MR | MR

[23] Thorn C., Nucl. Phys., B287:1 (1987), 61–103 | MR