Quantum dynamics of transitions in two-level electron–phonon systems with strong interactions
Teoretičeskaâ i matematičeskaâ fizika, Tome 85 (1990) no. 1, pp. 89-101 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Dyson equation and operators of nonorthogonal projection are used to calculate the frequency dependence of the relaxation coefficients of generalized kinetic equations for a two-level electron–phonon system. It is shown that the relaxation coefficients can be represented in the form of a continued fraction, the parameters of which can be expressed in terms of the Fourier transforms of the many-time correlation functions, these having a real physical meaning as the transition rates at the time $t$ in the second, fourth, etc., orders of perturbation theory. The fraction truncated at the first term in the corresponding limiting cases gives the representations well-known in the literature for the transition rate. The approach is generalized further to calculate the many-time correlation functions in the case of nonlinear electron–phonon coupling.
@article{TMF_1990_85_1_a8,
     author = {N. U. Nazarov and O. A. Ponomarev},
     title = {Quantum dynamics of~transitions in~two-level electron{\textendash}phonon systems with strong interactions},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {89--101},
     year = {1990},
     volume = {85},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1990_85_1_a8/}
}
TY  - JOUR
AU  - N. U. Nazarov
AU  - O. A. Ponomarev
TI  - Quantum dynamics of transitions in two-level electron–phonon systems with strong interactions
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1990
SP  - 89
EP  - 101
VL  - 85
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1990_85_1_a8/
LA  - ru
ID  - TMF_1990_85_1_a8
ER  - 
%0 Journal Article
%A N. U. Nazarov
%A O. A. Ponomarev
%T Quantum dynamics of transitions in two-level electron–phonon systems with strong interactions
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1990
%P 89-101
%V 85
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1990_85_1_a8/
%G ru
%F TMF_1990_85_1_a8
N. U. Nazarov; O. A. Ponomarev. Quantum dynamics of transitions in two-level electron–phonon systems with strong interactions. Teoretičeskaâ i matematičeskaâ fizika, Tome 85 (1990) no. 1, pp. 89-101. http://geodesic.mathdoc.fr/item/TMF_1990_85_1_a8/

[1] Apanasevich P. A., Kilin S. Ya., Nizovtsev A. P., ZhPS, 47:6 (1987), 887–911

[2] Mori H., Progr. Theor. Phys., 33:3 (1965), 423–455 | DOI | MR | Zbl

[3] Grigolini P., J. Stat. Phys., 27:2 (1982), 283–316 | DOI | MR | Zbl

[4] D'Andrea A., Phys. Rev., A39:10 (1989), 5143–5152 | DOI

[5] Makri M., Miller W. H., J. Chem. Phys., 90:2 (1989), 904–911 | DOI

[6] Sparpaglione M., Mukamel S., J. Chem. Phys., 88:5 (1988), 3263–3280 | DOI

[7] Sumi H., J. Phys. Soc. Japan, 49:5 (1980), 1701–1712 | DOI

[8] Zusman L. D., Opt. i spektr., 65:3 (1988), 721–725

[9] Gelman A. B., Khim. fizika, 7:6 (1988), 764–772

[10] Koffi U., Ivens M., Grigolini P., Molekulyarnaya diffuziya i spektry, Mir, M., 1987

[11] Kovarskii V. A., Perelman N. F., Averbukh I. Sh., Mnogokvantovye protsessy, Energoatomizdat, M., 1985 | MR

[12] Zharikov A. A., Burshtein A. I., Khim. fizika, 6:9 (1987), 1193–1172

[13] Nakazawa H., Phys. Rev., A39:10 (1989), 5391–5398 | DOI | MR

[14] Ivanov A. I., Lomakin G. S., Ponomarev O. A., TMF, 41:2 (1979), 273–284 | MR