Difference analogs of the harmonic oscillator
Teoretičeskaâ i matematičeskaâ fizika, Tome 85 (1990) no. 1, pp. 64-73 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Two different models of a difference oscillator are discussed on the basis of the factorization method.
@article{TMF_1990_85_1_a6,
     author = {N. M. Atakishiyev and S. K. Suslov},
     title = {Difference analogs of~the harmonic oscillator},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {64--73},
     year = {1990},
     volume = {85},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1990_85_1_a6/}
}
TY  - JOUR
AU  - N. M. Atakishiyev
AU  - S. K. Suslov
TI  - Difference analogs of the harmonic oscillator
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1990
SP  - 64
EP  - 73
VL  - 85
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1990_85_1_a6/
LA  - ru
ID  - TMF_1990_85_1_a6
ER  - 
%0 Journal Article
%A N. M. Atakishiyev
%A S. K. Suslov
%T Difference analogs of the harmonic oscillator
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1990
%P 64-73
%V 85
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1990_85_1_a6/
%G ru
%F TMF_1990_85_1_a6
N. M. Atakishiyev; S. K. Suslov. Difference analogs of the harmonic oscillator. Teoretičeskaâ i matematičeskaâ fizika, Tome 85 (1990) no. 1, pp. 64-73. http://geodesic.mathdoc.fr/item/TMF_1990_85_1_a6/

[1] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii, T. 2, Nauka, M., 1966 | MR

[2] Nikiforov A. F., Suslov S. K., Uvarov V. B., Klassicheskie ortogonalnye polinomy diskretnoi peremennoi, Nauka, M., 1985 | MR

[3] Atakishiev N. M., Suslov S. K., Sovremennyi gruppovoi analiz: metody i prilozheniya, Elm, Baku, 1989, 17–20 | MR

[4] Malkin I. A., Manko V. I., Dinamicheskie simmetrii i kogerentnye sostoyaniya kvantovykh sistem, Nauka, M., 1979 | MR

[5] Atakishiyev N. M., Lecture Notes in Phys., 180, Springer-Verlag, Berlin, 1983, 393–396 | DOI

[6] Gelfand I. M., Minlos R. A., Shapiro Z. Ya., Predstavleniya gruppy vraschenii i gruppy Lorentsa, Fizmatgiz, M., 1953

[7] Inönü E., Wigner E. P., Proc. Nation. Acad. Scien. USA, 39:6 (1953), 510–524 | DOI | MR | Zbl

[8] Miller W., Jr., Symmetry Groups and their applications, Academic Press, New York, 1972 | MR | Zbl

[9] Landau L. D., Lifshits E. M., Kvantovaya mekhanika (nerelyativistskaya teoriya), Nauka, M., 1974 | MR

[10] Perelomov A. M., Obobschennye kogerentnye sostoyaniya i ikh primeneniya, Nauka, M., 1987 | MR

[11] Macfarlane A. J., J. Phys. A: Math. Gen., 22 (1989), 4581–4588 | DOI | MR | Zbl

[12] Biedenharn L. C., J. Phys. A.: Math. Gen., 22 (1989), L873–L878 | DOI | MR | Zbl

[13] Rogers L. J., Proc. Lond. Math. Soc. (2), 25 (1894), 318–343 | DOI

[14] Rogers L. J., Proc. Lond. Math. Soc. (2), 16 (1917), 315–336 | DOI | Zbl

[15] Szegö G., Sitz. Preuss. Akad. Wiss. Phys.-Math. Kl., 19 (1926), 242–252

[16] Askey R., Ismail M. E. H., Studies in Pure Mathematics, ed. P. Erdös, Birkhauser, Boston, Mass., 1983, 55–78 | DOI | MR

[17] Askey R., Wilson J. A., Memoirs Amer. Math. Soc., 319, 1985 | MR | Zbl

[18] Atakishiyev N. M., Suslov S. K., On the Askey–Wilson polynomials, Preprint KMU-NTZ 89-04, Leipzig, 1989 | MR | Zbl

[19] Ismail M. E. H., Stanton D., Viennot G., Europ. J. Combinatorics, 8 (1987), 379–392 | DOI | MR | Zbl