Spectrum of the Dirac operator in $\mathbb R^n$ with periodic potential
Teoretičeskaâ i matematičeskaâ fizika, Tome 85 (1990) no. 1, pp. 41-53
Cet article a éte moissonné depuis la source Math-Net.Ru
For the Dirac operator with periodic potential, conditions under which there are no eigenvalues in its spectrum are found.
@article{TMF_1990_85_1_a4,
author = {L. I. Danilov},
title = {Spectrum of~the {Dirac} operator in~$\mathbb R^n$ with periodic potential},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {41--53},
year = {1990},
volume = {85},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1990_85_1_a4/}
}
L. I. Danilov. Spectrum of the Dirac operator in $\mathbb R^n$ with periodic potential. Teoretičeskaâ i matematičeskaâ fizika, Tome 85 (1990) no. 1, pp. 41-53. http://geodesic.mathdoc.fr/item/TMF_1990_85_1_a4/
[1] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki, T. 2, Mir, M., 1978 | MR
[2] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki, T. 4, Mir, M., 1982 | MR
[3] Danilov L. I., O spektre operatora Diraka s periodicheskim potentsialom, Preprint, FTI UrO AN SSSR, Sverdlovsk, 1987
[4] Thomas L. E., Commun. Math. Phys., 33 (1973), 335–343 | DOI | MR
[5] Harris B. J., Proc. of the Royal Soc. of Edinburgh, 89A (1981), 55–62 | DOI | MR | Zbl
[6] Danilov L. I., Odno svoistvo tselochislennoi reshetki v $\mathbf{R}^3$ i spektr operatora Diraka s periodicheskim potentsialom, Preprint, FTI UrO AN SSSR, Sverdlovsk, 1988