Some properties of the solutions of a quasipotential equation
Teoretičeskaâ i matematičeskaâ fizika, Tome 85 (1990) no. 1, pp. 155-160 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A study is made of the order of the energy levels of bound two-particle systems described by relativistic equations that can be transformed to a local form. It is found that the energy levels of the quasi-potential equation are normally ordered if the quasipotential is a nonincreasing function of the energy. A method is proposed for numerical solution of the quasipotential equation with the relativistic kinematics taken into account explicitly and the relativistic dynamics taken into account by perturbation theory.
@article{TMF_1990_85_1_a13,
     author = {V. O. Galkin and R. N. Faustov},
     title = {Some properties of~the solutions of~a~quasipotential equation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {155--160},
     year = {1990},
     volume = {85},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1990_85_1_a13/}
}
TY  - JOUR
AU  - V. O. Galkin
AU  - R. N. Faustov
TI  - Some properties of the solutions of a quasipotential equation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1990
SP  - 155
EP  - 160
VL  - 85
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1990_85_1_a13/
LA  - ru
ID  - TMF_1990_85_1_a13
ER  - 
%0 Journal Article
%A V. O. Galkin
%A R. N. Faustov
%T Some properties of the solutions of a quasipotential equation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1990
%P 155-160
%V 85
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1990_85_1_a13/
%G ru
%F TMF_1990_85_1_a13
V. O. Galkin; R. N. Faustov. Some properties of the solutions of a quasipotential equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 85 (1990) no. 1, pp. 155-160. http://geodesic.mathdoc.fr/item/TMF_1990_85_1_a13/

[1] Baumgartner B., Grosse H., Martin A., Phys. Lett., 146B:5 (1984), 363–366 ; Nucl. Phys., B254:3–4 (1985), 528–542 | DOI | MR | DOI | MR

[2] Common A. K., Martin A., J. Phys., A20:13 (1987), 4247–4255 | MR

[3] Martin A., Some Properties of Bound States in Potentials, Preprint TH. 4676/87-CERN, CERN, Geneva, 1987

[4] Galkin V. O., Faustov R. N., “Massy i shiriny radiatsionnykh raspadov mezonov v relyativistskoi kvarkovoi modeli”, Trudy VIII Mezhdunarodnogo soveschaniya po problemam kvantovoi teorii polya (Alushta, 1987); Д2-87-798, ОИЯИ, Дубна, 1987

[5] Galkin V. O., Faustov R. N., YaF, 44:6 (1986), 1575–1581; Галкин В. О., Мишуров А. Ю., Фаустов Р. Н., ЯФ, 51:4 (1990), 1101–1109

[6] Bete G., Solpiter E., Kvantovaya mekhanika atomov s odnim i dvumya elektronami, Fizmatgiz, M., 1960

[7] Logunov A. A., Tavkhelidze A. N., Nuovo Cim., 29:2 (1963), 380–399 | DOI | MR

[8] Faustov R. N., EChAYa, 3:1 (1972), 238–268; Ann. Phys., 78:1 (1973), 176–186 | DOI

[9] Todorov I. T., Phys. Rev., D3:10 (1971), 2351–2356

[10] Kadyshevskii V. G., Mir-Kasimov R. M., Skachkov N. B., EChAYa, 2:3 (1972), 637–690

[11] Kang J. S., Schnitzer H. J., Phys. Rev., D12:3 (1975), 841–854

[12] Bodwin G. T., Yennie D. R., Phys. Rep., 43:6 (1978), 267–303 | DOI

[13] Martynenko A. P., Faustov R. N., TMF, 64:2 (1985), 179–185

[14] Martynenko A. P., Faustov R. N., TMF, 66:3 (1986), 399–408 | MR

[15] Blatt J. H., J. Comp. Phys., 1:3 (1967), 382–396 | DOI | Zbl

[16] Fridman A., Introduction to $\Upsilon$ Quarkonium Physics, Preprint 83-131-DESY, DESY, Hamburg, 1983