Further remarks on the inequlity of the inertial and gravitational masses in general relativity
Teoretičeskaâ i matematičeskaâ fizika, Tome 85 (1990) no. 1, pp. 16-24 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The definition for the energy of an isolated system in general relativity that was introduced by Einstein and supported by Klein is analyzed once more in detail. It is shown that the definition is not physically correct, since it leads to a vanishing value of the energy for any system that satisfies Einstein's conditions. However, the abandonment of these conditions also does not enable one to solve the problem of energy in general relativity; as is shown for the example of the Schwarzschild solution, the inertial mass of a spherically symmetric body in this case is not equal to its gravitational mass.
@article{TMF_1990_85_1_a1,
     author = {V. I. Denisov and A. A. Logunov},
     title = {Further remarks on~the inequlity of~the inertial and gravitational masses in~general relativity},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {16--24},
     year = {1990},
     volume = {85},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1990_85_1_a1/}
}
TY  - JOUR
AU  - V. I. Denisov
AU  - A. A. Logunov
TI  - Further remarks on the inequlity of the inertial and gravitational masses in general relativity
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1990
SP  - 16
EP  - 24
VL  - 85
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1990_85_1_a1/
LA  - ru
ID  - TMF_1990_85_1_a1
ER  - 
%0 Journal Article
%A V. I. Denisov
%A A. A. Logunov
%T Further remarks on the inequlity of the inertial and gravitational masses in general relativity
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1990
%P 16-24
%V 85
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1990_85_1_a1/
%G ru
%F TMF_1990_85_1_a1
V. I. Denisov; A. A. Logunov. Further remarks on the inequlity of the inertial and gravitational masses in general relativity. Teoretičeskaâ i matematičeskaâ fizika, Tome 85 (1990) no. 1, pp. 16-24. http://geodesic.mathdoc.fr/item/TMF_1990_85_1_a1/

[1] Logunov A. A., Folomeshkin V. N., TMF, 33:2 (1977), 174–184 | MR | Zbl

[2] Denisov V. I., Logunov A. A., Itogi nauki i tekhniki. Sovremennye problemy matematiki, 21, VINITI, M., 1982 | MR | Zbl

[3] Denisov V. I., Logunov A. A., TMF, 43:2 (1980), 187–201 ; 45:3, 291–301 ; 51:2 (1982), 163–170 | MR | Zbl | MR | Zbl | MR | Zbl

[4] Logunov A. A., Mestvirishvili M. A., Osnovy relyativistskoi teorii gravitatsii, Izd-vo MGU, M., 1986

[5] Logunov A. A., Loskutov Yu. M., Mestvirishvili M. A., UFN, 155:3 (1988), 369–395 | DOI

[6] Hilbert D., Göttingen Nachrichten, 4 (1917), 21

[7] Zeldovich Ya. B., Grischuk L. P., UFN, 149:4 (1986), 695–707 | DOI | MR

[8] Novikov S. P., Vestn. AN SSSR, 1989, no. 2, 81

[9] Einshtein A., Sobr. nauchn. tr., T. 1, Nauka, M., 1965, S. 652.

[10] Klein F., Nachr. Ges. Wiss. Göttingen Math.-Phys. Klasse, 1918

[11] Einshtein A., Sobr. nauchn. tr., T. 1, Nauka, M., 1965, S. 660.

[12] Tolmen R., Otnositelnost, termodinamika i kosmologiya, Nauka, M., 1974 | MR

[13] Landau L. D., Lifshits E. M., Teoriya polya, Nauka, M., 1973, S. 424. | MR

[14] D. D. Ivanenko (red.), Nelineinaya kvantovaya teoriya polya, M., 1966, S. 60. | Zbl

[15] Mizner Ch., Torn K., Uiller Dzh., Gravitatsiya, Mir, M., 1977

[16] Pauli V., Teoriya otnositelnosti, M., 1974

[17] Weyl H., Raum, Zeit, Materie, Springer, Berlin-Verlag, 1923 | MR | Zbl

[18] Denisov V. I., Solovev V. O., TMF, 56:2 (1983), 301–314 | MR | Zbl

[19] Logunov A. A., Loskutov Yu. M., Relyativistskaya teoriya gravitatsii kak teoriya s narushennoi kalibrovochnoi gruppoi, Izd-vo MGU, M., 1989