Quantum mechanics in Riemannian spacetime.
Teoretičeskaâ i matematičeskaâ fizika, Tome 84 (1990) no. 3, pp. 419-430
Cet article a éte moissonné depuis la source Math-Net.Ru
A study is made of the $c^{-2}$ asymptotics ($c$ is the speed of light) of the theory of a complex scalar field in a general Riemannian spacetime; the field interacts with an external electromagnetic field. In a freely falling (Gaussian normal) frame of reference we obtain a generally covariant analog of the Schrödinger equation for a scalar particle in external gravitational and electromagnetic fields with relativistic corrections of arbitrary order. It is shown that allowance for the geometrical variation in time of the phase-space element leads to a Hamiltonian that is (asymptotically) Hermitian with respect to the standard scalar product, and this provides a basis for the Born interpretation of the corresponding wave functions.
@article{TMF_1990_84_3_a8,
author = {\'E. A. Tagirov},
title = {Quantum mechanics {in~Riemannian} spacetime.},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {419--430},
year = {1990},
volume = {84},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1990_84_3_a8/}
}
É. A. Tagirov. Quantum mechanics in Riemannian spacetime.. Teoretičeskaâ i matematičeskaâ fizika, Tome 84 (1990) no. 3, pp. 419-430. http://geodesic.mathdoc.fr/item/TMF_1990_84_3_a8/
[1] Gorbatsevich A. K., Kvantovaya mekhanika v obschei teorii otnositelnosti, Izd-vo BGU, Minsk, 1985 | MR
[2] Kuchař K., Phys. Rev., 22D (1980), 1285 | MR
[3] Penrouz R., Struktura prostranstva-vremeni, Mir, M., 1972 | MR
[4] Vladimirov Yu. S., Sistemy otscheta v obschei teorii otnositelnosti, Energoizdat, M., 1982
[5] Chernikov N. A., Tagirov E. A., Ann. Inst. H. Poincare, A9 (1969), 131 | MR | Zbl
[6] Stephani H., Ann. der Physik, 15 (1965), 12 | DOI | Zbl
[7] Maslov V. P., Fedoryuk M. V., Kvaziklassicheskoe priblizhenie dlya uravnenii kvantovoi mekhaniki, Nauka, M., 1976 | MR