Universal regularizations.
Teoretičeskaâ i matematičeskaâ fizika, Tome 84 (1990) no. 3, pp. 398-410
Cet article a éte moissonné depuis la source Math-Net.Ru
It is shown that from the linearized Slavnov identity introduced in an earlier paper [2] it follows that the effective Lagrangian of the regularized theory can be reduced to a BRST-invariant form by a certain special linear transformation of the fields. Technically, the proof of the corresponding theorem requires the introduction of a new system of ghosts. The new ghosts make it possible, in particular, to interpret the original symmetry condition nonperturbatively.
@article{TMF_1990_84_3_a6,
author = {O. I. Zavialov and A. M. Malokostov},
title = {Universal regularizations.},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {398--410},
year = {1990},
volume = {84},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1990_84_3_a6/}
}
O. I. Zavialov; A. M. Malokostov. Universal regularizations.. Teoretičeskaâ i matematičeskaâ fizika, Tome 84 (1990) no. 3, pp. 398-410. http://geodesic.mathdoc.fr/item/TMF_1990_84_3_a6/
[1] Zavyalov O. I., Malokostov A. M., TMF, 84:1 (1990), 46–63 | MR | Zbl
[2] Zavyalov O. I., Malokostov A. M., TMF, 84:2 (1990), 195–204 | MR | Zbl
[3] Zavialov O. I., Renormalized Quantum Field Theory, Kluwer Academic Publishers, Dordrecht, Holland, 1990 | MR | Zbl
[4] Slavnov A. A., TMF, 10 (1972), 153–161
[5] Becchi C., Rouet A., Stora R., Commun. Math. Phys., 42 (1975), 127–142 | DOI | MR